Abstract
This paper presents the design of a complete control system for the autonomous landing of unmanned flybarless helicopters on known stationary visual landmarks. A state estimator based on the complementary filters notion, estimates the position, translational velocity and attitude vectors of the vehicle by fusing data acquired from the on–board camera and an Inertial Measurement Unit. A vision-aided nonlinear model predictive controller is designed for the landing motion of the helicopter, assuming that the on–board camera is rigidly (i.e., no additional Degrees of Freedom (DOF)) attached on the vehicle. Although the under–actuated character of the helicopter dynamics introduces counter–goals for minimizing the error between the vehicle and the landmark, the proposed control scheme guarantees, via hard nonlinear constraints, that the landmark will always be kept inside the camera field of view during the landing procedure. In order to simplify the derived algorithm without violating the robustness of the proposed controller, we reformulate the translational helicopter dynamics in order to reduce the number of the unknown model parameters to a minimum. Moreover, a parameter/disturbance observer is designed for estimating simultaneously the vehicle’s unknown dynamic parameters as well as the induced disturbances. The efficacy of the proposed landing scheme is evaluated via a set of experimental and simulation results, using a small–scale flybarless helicopter.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Cai, G., Chen, B.M., Lee, T.H.: Unmanned rotorcraft systems. Springer Science & Business Media, London (2011)
Cesetti, A., Frontoni, E., Mancini, A., Zingaretti, P., Longhi, S.: A vision-based guidance system for uav navigation and safe landing using natural landmarks. J. Intell. Robot. Syst. Theory Appl. 57(1–4), 233–257 (2010). https://doi.org/10.1007/s10846-009-9373-3
Duan, X., Dong, H., Wu, K., Tian, Z., Wang, Z.: UAV flight control based on RTX system simulation platform. Sensors Transducers 166(3), 1–6 (2014)
Gadewadikar, J., Lewis, F.L., Subbarao, K., Peng, K., Chen, B.M.: H ∞ static output-feedback control for rotorcraft. J. Intell. Robot. Syst. 54(4), 629–646 (2009)
Garcia-Pardo, P., Sukhatme, G., Montgomery, J.: Towards vision-based safe landing for an autonomous helicopter. Robot. Autonom. Syst. 38(1), 19–29 (2002). https://doi.org/10.1016/S0921-8890(01)00166-X
Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., Marín-Jiménez, M.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014). https://doi.org/10.1016/j.patcog.2014.01.005
Hamel, T., Mahony, R.: Visual servoing of an under-actuated dynamic rigid-body system: An image-based approach. IEEE Trans. Robot. Autom. 18(2), 187–198 (2002). https://doi.org/10.1109/TRA.2002.999647
Higgins, W.: A comparison of complementary and Kalman filtering. IEEE Trans. Aerospace Electron. Syst. 11, 321–325 (1975). https://doi.org/10.1109/TAES.1975.308081
Hooi, C.G., Lagor, F.D., Paley, D.A.: Flow sensing for height estimation and control of a rotor in ground effect: Modeling and experimental results. Annual Forum Proceedings - AHS International 3, 1878–1889 (2015)
Huang, H., Xu, Y.P., Deng, Z.W.: Real-time visual flight simulation system based on Flightgear simulator. Xitong Fangzhen Xuebao / J. Syst. Simul. 19(19), 4421–4423 (2007)
Isermann, R., Schaffnit, J., Sinsel, S.: Hardware-in-the-loop simulation for the design and testing of engine-control systems. Control Eng. Pract. 7(5), 643–653 (1999)
Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol 3, pp. 2149–2154. (2004)
Liu, C., Chen, W.H., Andrews, J.: Tracking control of small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers. Control Eng. Pract. 20(3), 258–268 (2012). https://doi.org/10.1016/j.conengprac.2011.10.015
Mahony, R., Hamel, T.: Robust trajectory tracking for a scale model autonomous helicopter. Int. J. Robust Nonlinear Control 14(12), 1035–1059 (2004). https://doi.org/10.1002/rnc.931
Marantos, P., Karras, G.C., Bechlioulis, C.P., Kyriakopoulos, K.J.: Autonomous model-free landing control of small-scale flybarless helicopters. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA.2015.7139934 (2015)
Marantos, P., Koveos, Y., Kyriakopoulos, K.J.: Uav state estimation using adaptive complementary filters. IEEE Trans. Control Syst. Technol. 24(4), 1214–1226 (2016). https://doi.org/10.1109/TCST.2015.2480012
Marantos, P., Karras, G.C., Vlantis, P., Kyriakopoulos, K.J.: Simulation & Experimental Results Video - Vision-based Autonomous Landing Control for Unmanned Helicopters. https://youtu.be/pmjG6EMkN7c (2017)
Marconi, L., Naldi, R.: Robust full degree-of-freedom tracking control of a helicopter. Automatica 43(11), 1909–1920 (2007). https://doi.org/10.1016/j.automatica.2007.03.028
Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36, 789–814 (2000)
Merz, T., Duranti, S., Conte, G.: Autonomous landing of an unmanned helicopter based on vision and inertial sensing. Springer Tracts Adv. Robot. 21, 343–352 (2006). https://doi.org/10.1007/11552246_33
Morari, M., Leeb, J.H.: Model predictive control: Past, present and future. Comput. Chem.l Eng. 23, 667–682 (1999)
Olivares-Mendez, M., Mondragon, I., Campoy, P.: Autonomous landing of an unmanned aerial vehicle using image-based fuzzy control. 2, 79–86. (2013). https://doi.org/10.3182/20131120-3-FR-4045.00011
Patel, K., Barve, J.: Modeling, simulation and control study for the quad-copter UAV. In: 2014 9th International Conference on Industrial and Information Systems (ICIIS), pp. 1–6. (2014). https://doi.org/10.1109/ICIINFS.2014.7036590
Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: An open-source robot operating system. In: ICRA Workshop on Open Source Software vol. 3, p. 5 (2009)
Raptis, I.A., Valavanis, K.P.: Linear and nonlinear control of small-scale unmanned helicopters, vol. 25. Springer Science & Business Media, Dordrecht (2010)
Ruffier, F., Franceschini, N.: Optic flow regulation in unsteady environments: A tethered MAV achieves terrain following and targeted landing over a moving platform. J. Intell. Robot. Syst. Theory Appl. 79(2), 275–293 (2015). https://doi.org/10.1007/s10846-014-0062-5
Saripalli, S., Sukhatme, G.S.: Landing a helicopter on a moving target. In: Proceedings of the 2007 IEEE International Conference on Robotics & Automation (ICRA), pp 2030–2035. IEEE, Rome (2007). https://doi.org/10.1109/ROBOT.2007.363620
Saripalli, S., Montgomery, J., Sukhatme, G.: Visually guided landing of an unmanned aerial vehicle. IEEE Trans.on Robot. Autom. 19(3), 371–380 (2003). https://doi.org/10.1109/TRA.2003.810239
Templeton, T., Shim, D., Geyer, C., Sastry, S.: Autonomous vision-based landing and terrain mapping using an mpc-controlled unmanned rotorcraft. pp 1349–1356. (2007). https://doi.org/10.1109/ROBOT.2007.363172
Vaerenbergh, S.V., Vía, J., Santamaría, I.: Nonlinear system identification using a new sliding-window kernel rls algorithm. J. Commun. 2(3), 1–8 (2007)
Vlantis, P., Marantos, P., Bechlioulis, C.P., Kyriakopoulos, K.J.: Quadrotor landing on an inclined platform of a moving ground vehicle. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2202–2207. (2015). https://doi.org/10.1109/ICRA.2015.7139490
Vogeltanz, T.: A Survey of Free Software for the Design, Analysis, Modelling, and Simulation of an Unmanned Aerial Vehicle. Arch. Comput. Meth. Eng. 23(3), 449–514 (2016). https://doi.org/10.1007/s11831-015-9147-y
Wenzel, K., Masselli, A., Zell, A.: Automatic take off, tracking and landing of a miniature uav on a moving carrier vehicle. J. Intell. Robot. Syst. Theory Appl. 61(1-4), 221–238 (2011)
Yili, S., Ziyang, Z., Chaojie, O., Huangzhong, P.: 3D scene simulation of UAVs formation flight based on FlightGear simulator. In: 2014 IEEE Chinese on Guidance, Navigation and Control Conference (CGNCC), pp. 1978–1982. (2014). https://doi.org/10.1109/CGNCC.2014.7007481
Yu, Z., Nonami, K., Shin, J., Celestino, D.: 3d vision based landing control of a small scale autonomous helicopter. Int. J. Adv. Robot. Syst. 4(1), 51–56 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Marantos, P., Karras, G.C., Vlantis, P. et al. Vision-based Autonomous Landing Control for Unmanned Helicopters. J Intell Robot Syst 92, 145–158 (2018). https://doi.org/10.1007/s10846-017-0702-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-017-0702-7