Skip to main content
Log in

Information-Driven Rapidly-Exploring Random Tree for Efficient Environment Exploration

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Exploration of unknown environments using autonomous mobile robots is essential in various scenarios such as, for instance, search and rescue missions following natural disasters. The task consists essentially in transversing the environment to build a complete and accurate map of it, and different applications may demand different exploration strategies. In the literature, the most used strategy is a simple greedy approach which visits closest unknown sites first, without considering whether they will likely yield significant information gain about the environment. In this paper, we propose a navigation strategy for efficient exploration of unknown environments that, based on local structures present in the map built so far, uses Shannon entropy to estimate the expected information gain of exploring each candidate frontier. A key advantage of our method over the state of the art is that it allows for the robot to simultaneously (i) select a destination likely to be most informative among all candidate frontiers; and (ii) compute its own path to that destination. This unified approach balances priority among candidate frontiers with highly expected information gain and those closer to the current position of the robot. We thoroughly evaluate our methodology in several experiments in a simulated environment, showing that our approach provides faster information gain about the environment when compared to other exploration strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1997. CIRA’97., Proceedings., 1997, pp. 146–151 (1997)

  2. Jadidi, M.G., Miró, J.V., Valencia, R., Andrade-Cetto, J.: Exploration on continuous gaussian process frontier maps. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6077–6082 (2014)

  3. Vallvé, J., Andrade-Cetto, J.: Active pose SLAM with RRT*. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2167–2173 (2015)

  4. Amigoni, F., Caglioti, V.: An information-based exploration strategy for environment mapping with mobile robots. Robot. Auton. Syst. 58(5), 684–699 (2010)

    Article  Google Scholar 

  5. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cover, T.M., Thomas, J.A.: Elements of Information theory, 2nd edn. Wiley (2006)

  7. Pimentel, J.M., Macharet, D.G., Campos, M.F.M.: Information-theoretic frontier selection for environment exploration. In: 13th Latin American Robotics Symposium and 4th Brazilian Symposium on Robotics (LARS-SBR) (2016)

  8. Lavalle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Computer Science Department, Iowa State University, Tech. Rep. (1998)

  9. Freda, L., Oriolo, G.: Frontier-based probabilistic strategies for sensor-based exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3881–3887 (2005)

  10. Schmidt, D., Luksch, T., Wettach, J., Berns, K.: Autonomous behavior-based exploration of office environments. In: ICINCO-RA, pp. 235–240 (2006)

  11. Colares, R.G., Chaimowicz, L.: Information window: uma nova abordagem para exploração de fronteiras. Anais do XX Congresso Brasileiro de automática (2014)

  12. Jadidi, M.G., Miro, J.V., Dissanayake, G.: Mutual information-based exploration on continuous occupancy maps. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 6086–6092 (2015)

  13. González-Baños, H.H., Latombe, J.: Navigation strategies for exploring indoor environments. I. J. Robotic Res. 21(10-11), 829–848 (2002)

    Article  Google Scholar 

  14. Surmann, H., Nüchter, A., Hertzberg, J.: An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments. Robot. Auton. Syst. 45(3–4), 181–198 (2003)

    Article  Google Scholar 

  15. Charrow, B., Liu, S., Kumar, V., Michael, N.: Information-theoretic mapping using Cauchy-Schwarz quadratic mutual information. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4791–4798 (2015)

  16. Chang, H.J., Lee, C.S.G., Lu, Y.H., Hu, Y.C.: P-SLAM: simultaneous localization and mapping with environmental-structure prediction. IEEE Trans. Robot. 23(2), 281–293 (2007)

    Article  Google Scholar 

  17. Ström, D.P., Nenci, F., Stachniss, C.: Predictive exploration considering previously mapped environments. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2761–2766 (2015)

  18. Oßwald, S., Bennewitz, M., Burgard, W., Stachniss, C.: Speeding-up robot exploration by exploiting background information. IEEE Robotics and Automation Letters 1(2), 716–723 (2016)

    Article  Google Scholar 

  19. Stachniss, C., Martínez Mozos, Ó., Burgard, W.: Efficient exploration of unknown indoor environments using a team of mobile robots. Ann. Math. Artif. Intell. 52(2), 205–227 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Wurm, K.M., Stachniss, C., Burgard, W.: Coordinated multi-robot exploration using a segmentation of the environment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1160–1165 (2008)

  21. Juliá, M., Gil, A., Reinoso, O.: A comparison of path planning strategies for autonomous exploration and mapping of unknown environments. Auton. Robot. 33(4), 427–444 (2012)

    Article  Google Scholar 

  22. Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: International Conference on Robotics and Automation, pp 116–121 (1985)

  23. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)

    Article  Google Scholar 

  24. Carrillo, H., Dames, P., Kumar, V., Castellanos, J.A.: Autonomous robotic exploration using occupancy grid maps and graph SLAM based on Shannon and Rényi entropy. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp 487–494 (2015)

  25. Jarvis, R.A.: Collision-free trajectory planning using distance transforms. In: Proceedings of the National Conference and Exhibition on Robotics (1984)

  26. Hough, P.V.C.: Method and means for recognizing complex patterns, US Patent 3,069,654. [online]. Available: https://www.google.com/patents/US3069654 (1962)

  27. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)

    Article  Google Scholar 

  28. Howard, A., Roy, N.: The robotics data set repository (radish). [Online]. Available: http://radish.sourceforge.net/ (2003)

  29. Liang, X., Chen, H., Li, Y., Liu, Y.: Visual laser-slam in large-scale indoor environments. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 19–24 (2016)

  30. Kadir, H.A., Arshad, M.R.: Improved simultaneous localization and mapping (slam) algorithms for aerial vehicle under dynamic sea surface environment. In: 2016 IEEE International Conference on Underwater System Technology: Theory and Applications (USYS), pp. 61–66 (2016)

  31. Kumar, S.R., Ramkumar, K., Srinivasan, S.: Map spread factor based confidence weighted average technique for adaptive slam with unknown sensor model and noise covariance. In: 2016 International Conference on Robotics: Current Trends and Future Challenges (RCTFC), pp. 1–6 (2016)

Download references

Acknowledgements

This work was developed with support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Macharet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimentel, J.M., Alvim, M.S., Campos, M.F.M. et al. Information-Driven Rapidly-Exploring Random Tree for Efficient Environment Exploration. J Intell Robot Syst 91, 313–331 (2018). https://doi.org/10.1007/s10846-017-0709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0709-0

Keywords

Navigation