Skip to main content

Advertisement

Log in

Fast and Effective Loop Closure Detection to Improve SLAM Performance

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A fundamental component of simultaneous localization and mapping systems is loop closure detection. For consistent mapping, accurate loop closure detection is crucial to reduce the drift of the estimated trajectory. As the map size increases, loop closure detection performance becomes more critical, but it gets harder and needs more computational time to find correct loop closure candidates. This paper presents an extension to a state-of-the-art RGB-D SLAM system to increase accuracy of large-scale mapping in real-time. The proposed extension uses a straightforward visual place recognition method to determine loop closure candidates. The method combines global and local image features through employing image histograms and keypoint matching. Four different place recognition techniques composed of complementary steps of the method are studied: histogram only, brute-force keypoint matching, hierarchical clustering, and adaptive thresholding. The extended RGB-D SLAM system is assessed on a popular dataset in terms of accuracy and speed. The quantitative results show that the proposed method improves accuracy up to ∼42% and works fast enough to meet real-time requirements. The method enables to perform real-time large-scale indoor mapping effectively on CPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Agrawal, M., Konolige, K., Blas, M.: Censure: Center surround extremas for realtime feature detection and matching. In: Computer Vision–ECCV 2008, pp. 102–115. Springer (2008)

  2. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517. IEEE (2012)

  3. Angeli, A., Filliat, D., Doncieux, S., Meyer, J.A.: Fast and incremental method for loop-closure detection using bags of visual words. IEEE Trans. Robot. 24(5), 1027–1037 (2008)

    Article  Google Scholar 

  4. Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2911–2918. IEEE (2012)

  5. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  6. Calonder, M., Lepetit, V., Fua, P.: Keypoint signatures for fast learning and recognition. In: Computer Vision–ECCV 2008, pp. 58–71. Springer (2008)

  7. Cummins, M., Newman, P.: Appearance-only slam at large scale with fab-map 2.0. Int. J. Robot. Res. 30 (9), 1100–1123 (2011)

    Article  Google Scholar 

  8. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the rgb-d slam system. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 1691–1696. IEEE (2012)

  9. Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-d mapping with an rgb-d camera. IEEE Trans. Robot. 30(1), 177–187 (2014)

    Article  Google Scholar 

  10. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  11. Gálvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 28(5), 1188–1197 (2012)

    Article  Google Scholar 

  12. Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard, W.: Efficient estimation of accurate maximum likelihood maps in 3d. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007, pp. 3472–3478. IEEE (2007)

  13. Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based slam. IEEE Intell. Transp. Syst. Mag. 2(4), 31–43 (2010)

    Article  Google Scholar 

  14. Guclu, O., Can, A.: A comparison of feature detectors and descriptors in rgb-d slam methods. In: Image Analysis and Recognition, pp. 297–305. Springer (2015)

  15. Guclu, O., Can, A.: Histogram based visual place recognition for improving slam performance. In: 2016 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE (2016)

  16. Gutierrez-Gomez, D., Mayol-Cuevas, W., Guerrero, J.: Dense rgb-d visual odometry using inverse depth. Robot. Auton. Syst. 75, 571–583 (2016)

    Article  Google Scholar 

  17. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: Rgb-d mapping: Using depth cameras for dense 3d modeling of indoor environments. In: The 12th International Symposium on Experimental Robotics (ISER) (2010)

  18. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: Rgb-d mapping: Using kinect-style depth cameras for dense 3d modeling of indoor environments. Int. J. Robot. Res. 31(5), 647–663 (2012)

    Article  Google Scholar 

  19. Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for rgb-d cameras. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2100–2106. IEEE (2013)

  20. Konolige, K.: Sparse sparse bundle adjustment. In: BMVC, pp. 1–11 (2010)

  21. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g 2 o: A general framework for graph optimization. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 3607–3613. IEEE (2011)

  22. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  23. Lowry, S., Sünderhauf, N., Newman, P., Leonard, J.J., Cox, D., Corke, P., Milford, M.J.: Visual place recognition: A survey. IEEE Trans. Robot. 32(1), 1–19 (2016)

    Article  Google Scholar 

  24. Maier, R., Sturm, J., Cremers, D.: Submap-based bundle adjustment for 3d reconstruction from rgb-d data. In: Pattern Recognition, pp. 54–65. Springer (2014)

  25. Muja, M., Lowe, D.G.: Fast matching of binary features. In: 2012 9th Conference on Computer and Robot Vision (CRV), pp. 404–410. IEEE (2012)

  26. Newcombe, R., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A., Kohi, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: Real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 127–136. IEEE (2011)

  27. Nicosevici, T., Garcia, R.: Automatic visual bag-of-words for online robot navigation and mapping. IEEE Trans. Robot. 28(4), 886–898 (2012)

    Article  Google Scholar 

  28. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Computer Vision–ECCV 2006, pp. 430–443. Springer (2006)

  29. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)

  30. Scaramuzza, D., Fraundorfer, F.: Visual odometry, part i: The first 30 years and fundamentals. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  31. Segal, A., Haehnel, D., Thrun, S.: Generalized-icp. In: Robotics: Science and Systems, vol. 2 (2009)

  32. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proceedings of the 9th IEEE International Conference on Computer Vision, 2003, pp. 1470–1477. IEEE (2003)

  33. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of rgb-d slam systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 573–580. IEEE (2012)

  34. Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)

    Article  Google Scholar 

  35. Whelan, T., Kaess, M., Johannsson, H., Fallon, M., Leonard, J., McDonald, J.: Real-time large-scale dense rgb-d slam with volumetric fusion. Int. J. Robot. Res. 34(4-5), 598–626 (2015)

    Article  Google Scholar 

  36. Whelan, T., Kaess, M., Leonard, J., McDonald, J.: Deformation-based loop closure for large scale dense rgb-d slam. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 548–555. IEEE (2013)

  37. Whelan, T., McDonald, J., Kaess, M., Fallon, M., Johannsson, H., Leonard, J.: Kintinuous: Spatially extended KinectFusion. In: RSS Workshop on rgb-d: Advanced Reasoning with Depth Cameras (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Burak Can.

Additional information

A conference version of this paper is presented at ICARSC 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guclu, O., Can, A.B. Fast and Effective Loop Closure Detection to Improve SLAM Performance. J Intell Robot Syst 93, 495–517 (2019). https://doi.org/10.1007/s10846-017-0718-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0718-z

Keywords

Navigation