Skip to main content

Advertisement

Log in

A Global Path Planning Algorithm for Fixed-wing UAVs

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A new approach for solving the global optimal path planning problem to fixed-wing UAVs in multi-threat environments is proposed in this paper, which is mainly based on a natural combination of Genetic Algorithm (GA), Dijkstra searching algorithm, and Artificial Potential Field (APF) approach. First, a Delaunay partition of the flight space is introduced to map the continuous searching space on the Delaunay diagram, and the trajectory encoding methods for GA are designed based on the Delaunay network. Then, a shortest path is established by Dijkstra searching algorithm and the corresponding code is taken as the first population such that a GA could be conducted. Especially by considering flight turning constraints of fixed-wing UAVs, artificial potential field approach is utilized to make the path smooth after each evolution in GA. Finally, a global optimal path is obtained through the suggested algorithm and simulation results validate the effectiveness in both Two-Dimensional (2-D) and Three-Dimensional (3-D) flight environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnhart, R., Hottman, S.: Introduction to Unmanned Aircraft Systems. CRC Press Taylor & Francis Group (2011)

  2. Obermeyer, K.: Path planning for a UAV performing reconnaissance of static ground targets in terrain. In: AIAA Modeling and Simulation Technologies Conference, pp. 1–11 (2009)

  3. Bailliea, C., Michalakes, J., Skålinc, R.: Regional weather modeling on parallel computers. Parallel Comput. 23(14), 2135–2142 (1997)

    Article  MATH  Google Scholar 

  4. Sathyaraj, B., Jain, L.: Multiple UAVs path planning algorithms: A comparative study. Fuzzy Optim. Decis. Making. 7(3), 257–267 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fridman, A., Weber, S., Kumar, V.: Distributed path planning for connectivity under uncertainty by ant colony optimization. In: American Control Conference, pp. 1952–1958 (2008)

  6. Li, S., Ding, M.: Efficient path planning method based on genetic algorithm combining path network. In: International Conference on Genetic and Evolutionary Computing, pp. 194–197 (2010)

  7. Leng, F.: Decentralized Motion Planning within an Artificial Potential Framework for Cooperative Payload Transport by Multi-robot Collectives. M.Sc. Thesis. New York State University (2004)

  8. Sun, T., Huo, C.: Optimal UAV flight path planning using skeletonization and particle swarm optimizer. In: 2008 IEEE Congress on Evolutionary Computation, pp. 279–288 (2008)

  9. Kim, D., Sugihara, K.: Voronoi diagram of a circle set from Voronoi diagram of a point set: I. Topology. Comput. Aided Geom. Des. 18(6), 541–562 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yu, X., Zhang, Y.M.: Sense and avoid technologies with application to unmanned aircraft systems: review and prospects. Progress Aeros. Sci. 74, 152–166 (2015)

    Article  Google Scholar 

  11. Goldman, A.: Path planning problems and solutions. In: IEEE National Aerospace and Electronics Conference, pp. 105–108 (1994)

  12. Choset, H., Burdick, J.: Sensor-based exploration: The hierarchical generalized Voronoi graph. Int. J. Robot. Res. 19(2), 96–125 (2000)

    Article  Google Scholar 

  13. Chandler, P., Rasmussen, S., Pachter, M.: UAV cooperative path planning. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 1255–1265 (2000)

  14. Li, Q., Zhang, W., Yin, Y., Wang, Z., Liu, G.: An improved genetic algorithm of optimum path planning for mobile robots. In: Proceedings of the 6th International Conference on Intelligence Systems Design and Applications, pp. 637–642 (2006)

  15. Wu, W., Ruan, Q.: A gene-constrained genetic algorithm for solving shortest path problem. In: Proceedings of the 7th International Conference on Signal Processing, pp. 2512–2515 (2004)

  16. Inagaki, J., Haseyama, M., Kitajima, H.: Genetic algorithm for determining multiple routes and its applications. In: Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, pp. I-137–I-140 (1999)

  17. Merino, L., Wiklund, J., Caballero, F.: Vision-based multi-UAV position estimation. IEEE Robot. Autom. Mag. 13(3), 53–62 (2006)

    Article  Google Scholar 

  18. Borouchaki, H., Lo, S.: Fast Delaunay triangulation in three dimensions. Comput. Methods Appl. Mech. Eng. 128, 153–167 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qu, Y., Pan, Q., Yan, J.: Flight path planning of UAV based on heuristically search and genetic algorithms. J. Syst. Simul. 18(2), 278–281 (2005)

    Google Scholar 

  20. Thompson, J., Soni, B., Weatherwill, N: Handbook of Grid Generation. CRC Press (1999)

  21. Tan, G., He, H., Aaron, S.: Global optimal path planning for mobile robot based on improved Dijkstra algorithm and ant system algorithm. J. Central South Univ. Technol. (English Edition) 13, 80–86 (2006)

    Article  Google Scholar 

  22. Goldberg, A., Radzik, T.: Heuristic improvement of the Bellman-Ford algorithm. Appl. Math. Lett. 6, 3 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Christos, P., Martha, S.: On the Floyd-Warshall algorithm for logic programs. J. Logic Program. 41(1), 129–137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hong, T., Chuang, T.: New triangular fuzzy Johnson algorithm. Comput. Indus. Eng. 36(1), 179–200 (1999)

    Article  Google Scholar 

  25. Chen, Y., Luo, G.: UAV path planning using artificial potential field method updated by optimal control theory. Int. J. Syst. Sci. 1(4), 1407–1420 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Tsai, C., Huang, H., Chan, C.: Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation. IEEE Trans. Indus. Electro. 58(10), 4813–4821 (2011)

    Article  Google Scholar 

  27. Xu, Z., Tang, S.: Flight path planning based on improved genetic algorithm. J. Astronaut. 29(5), 1540–1545 (2008)

    Google Scholar 

  28. Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance. Phys. Stat. Mech. Appl. 391(6), 2193–2196 (2012)

    Article  Google Scholar 

  29. Yang, D., Zhang, C.: Two uniform cross points of genetic algorithm. J. Chongqing Normal Univ. 21(1), 26–29 (2004)

    Google Scholar 

  30. McGee, T.G., Hedrick, J.K.: Optimal path planning with a kinematic airplane model. AIAA J. Guid. Control Dyn. 30(2), 629–632 (2007)

    Article  Google Scholar 

  31. Witer, G.: Genetic Algorithms in Engineering and Computer Science. Wiley, Hoboken (1999)

    Google Scholar 

  32. Kenedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948. Perth (1995)

  33. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

Research supported by the National Natural Sciences Foundation of China (60974146, 61473229, and 61573282) and Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youmin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Zhang, Y. & Zhang, Y. A Global Path Planning Algorithm for Fixed-wing UAVs. J Intell Robot Syst 91, 691–707 (2018). https://doi.org/10.1007/s10846-017-0729-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0729-9

Keywords

Navigation