Skip to main content
Log in

Wall-following and Navigation Control of Mobile Robot Using Reinforcement Learning Based on Dynamic Group Artificial Bee Colony

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This study proposes an efficient wall-following and navigation control model that includes three control modes, namely w all-f ollowing (WF), t oward-g oal (TG), and b ehavior m anager (BM). To achieve an adaptive controller for WF mode, an efficientr ecurrent f uzzy c erebellar m odel a rticulation c ontroller (RFCMAC) based on d ynamic g roup a rtificial b ee c olony (DGABC) is proposed for implementing reinforcement learning process. The fitness function includes four assessment factors which are defined as follows: (1) maintaining safe distance between the mobile robot and the wall; (2) ensuring successfully running a cycle; (3) avoiding mobile robot collisions; (4) mobile robot running at a maximum speed. Moreover, the BM is used to switch WF mode and TG mode, and is employed as an escape mechanism based on the relationship between the robot and the environment. The experimental results show that the proposed DGABC is more effective than the traditional ABC in WF mode. The proposed control method also obtains a better navigation control than other methods in unknown environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Turennout, P., Honderd, G., van Schelven, L. J.: Wall-following control of a mobile robot. IEEE Int. Conf. Robot. Autom. 1, 280–285 (1992)

    Google Scholar 

  2. Kwolek, B.: The usage of hidden markov models in a vision system of a mobile robot, Second Workshop on Robot Motion and Control, pp. 257-262, 18–20 (2001)

  3. Chi, C. T., Wang, Y. T., Cheng, S. T., Shen, C. A.: Robot simultaneous localization and mapping using a calibrated kinect sensor. Sens. Mater. 26(5), 353–364 (2014)

    Google Scholar 

  4. Lefèvre, S., Fluck, C., Maillard, B., Vincent, N.: A fast snake-based method to track football players. In: IAPR International Workshop on Machine Vision Applications, Tokyo (Japan), pp. 501–504 (2000)

  5. Gavrilut, I., Tiponut, V.: Wall-following method for an autonomous mobile robot using two ir sensors. Inter. Conf. Syst. 1, 205–209 (2008)

    Google Scholar 

  6. Thongchai, S., Suksakulchai, S., Wilkes, D.M., Sarkar, N.: Sonar behavior-based fuzzy control for a mobile robot. IEEE Int. Conf. Syst. Man Cybern. 5, 3532–3537 (2000)

    Google Scholar 

  7. Al-Sahib, N. K. A., Ahmed, R. J.: Guiding mobile robot by applying fuzzy approach on sonar sensors. AI-Khwarizmi Eng. J. 6(3), 36–44 (2010)

    Google Scholar 

  8. Lin, C. T., George Lee, C. S.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice-Hall, New Jersey (1996)

    Google Scholar 

  9. Albus, J. S.: A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J. Dyn. Syst. Meas. Control, Trans. ASME 97, 220–227 (1975)

    Article  Google Scholar 

  10. Lee, C. Y., Lin, C. J., Chen, H. J.: A self-constructing fuzzy CMAC model and its applications. Inf. Sci. 177(1), 264–280 (2007)

    Article  Google Scholar 

  11. Shieh, H. L., Bao, C. Y.: A robust fuzzy cmac for function approximation. Int. Conf. Mach. Learn. Cyber. 6, 2962–2966 (2010)

    Google Scholar 

  12. Lane, S. H., Militzer, J.: A comparison of five algorithm for the training of CMAC memories for learning control systems. Int. Fed. Automat. Contr. 28(5), 1027–1035 (1992)

    MathSciNet  Google Scholar 

  13. Lin, C. S., Li, C. K.: A new neural network structure composed of small CMACs. In: Proceedings of IEEE Conference on Neural Systems, pp 1777–1783 (1996)

  14. Bezdek, J.C., Ehrlich, R.: FCM: The Fuzzy c-means Clustering algorithm. Comput. Geosci. 10, 191–203 (1984)

    Article  Google Scholar 

  15. Hsu, C. H., Juang, C. F.: Evolutionary robot wall-following control using type-2 fuzzy controller with species-de-activated continuous ACO. IEEE Trans. Fuzzy Syst. 21(1), 100–112 (2013)

    Article  Google Scholar 

  16. Hsu, C. H., Juang, C. F.: Multi-objective continuous-ant-colony-optimized fc for robot wall-following control. IEEE Comput. Intell. Mag. 8(3), 28–40 (2013)

    Article  Google Scholar 

  17. Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE Int. Conf. Neural Netw. 4, 1942–1948 (1995)

    Google Scholar 

  18. Dorigo, M., Caro, G. D.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation, vol. 2, pp 1470–1477 (1999)

  19. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  20. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  21. Wang, J. G., Tai, S. C., Lin, C. J.: Medical diagnosis applications using a novel interactively recurrent self-evolving fuzzy CMAC model. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 4092–4098 (2014)

  22. Chen, H., Cui, D. W., Li, X., Wang, Z. M.: Adaptation ethnic group evolution algorithm. In: IEEE Conference on Cybernetics and Intelligent Systems, pp 1181–1186 (2008)

  23. Li, L., Lin, C.J., Huang, M.L., Kuo, S.C., Chen, Y.R.: Mobile robot navigation control using recurrent fuzzy cmac based on improved dynamic artificial bee colony. Adv. Mech. Eng. 8(11). https://doi.org/10.1177/1687814016681234 (2016)

    Article  Google Scholar 

  24. Jun, S., Xu, W., Feng, B.: A global search strategy of quantum-behaved particle swarm optimization. In: Cybernetics and Intelligent Systems IEEE Conference, vol. 1, pp 111–116 (2004)

  25. Gong, W., Cai, Z.: Differential evolution with ranking- based mutation operators. IEEE Trans. Cybern. 43(6), 2066–2081 (2013)

    Article  Google Scholar 

  26. Zhang, J., Arthur, C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Jian Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, TC., Chen, CC. & Lin, CJ. Wall-following and Navigation Control of Mobile Robot Using Reinforcement Learning Based on Dynamic Group Artificial Bee Colony. J Intell Robot Syst 92, 343–357 (2018). https://doi.org/10.1007/s10846-017-0743-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0743-y

Keywords

Navigation