Skip to main content
Log in

Multi-Objective Weight Optimization for Trajectory Planning of an Airplane with Structural Damage

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents an integrated approach to determine and apply cost criteria weights for the multi-objective optimization (MOO) problem of emergency landing trajectory generation for an aircraft with structural damage. Cost criteria including terrain avoidance, Safety Value Index (SVI), fire cost, hydraulic and fuel costs and safe landing constraints such as touchdown heading and position, airspeed, and glide slope are defined. A potential field strategy is utilized to rapidly generate solutions based on a library of damaged airplane motion primitives including trim states and transition maneuvers between the trim conditions. As is typical, the diverse metrics compete, preventing simultaneous optimization over all objectives. This paper proposes a novel approach to translate the subjective information provided by Pareto analysis into a weighted cost function using an entropy-based weight selection method. The resultant weights reflect the subjective preferences of a decision maker in the total integrated cost metric. Simulation results demonstrate the effectiveness of weight selection based on the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ch :

= hinge moment coefficient

D:

= matrix of variables in data library

DM:

= decision matrix

E:

= entropy

dT :

= airplane distance to terrain

g:

= cost function

h:

= heuristic cost function

I:

= mutual information

J:

= cost function

L:

= subscript for landing condition

M:

= maneuvers

M:

= normalized decision matrix

p, q, r:

= roll, pitch, and yaw rates, respectively, rad/s

P:

= Position of airplane

T:

= trim trajectories

U:

= best solution

V:

= total velocity in body axes, m/s

W:

= weighting factor in heuristic function

W :

= comprehensive weight vector

w j′:

= weights derived from entropy method

α, β, γ :

= angle of attack, sideslip, and flight path angle,

ψ, 𝜃, ϕ :

= yaw, pitch, and roll angles, rad

λ j :

= weights derived from Pareto analysis

ρ :

= correlation

Ω:

= set of cost function

Δx, Δy, Δz:

= variation in airplane position in each trajectory segment, m

Δs:

= length of each trajectory segment

References

  1. Chow, J., et al.: Protecting commercial aviation against the Shoulder-Fired missile threat, RAND occasional paper, Santa Monica (2005)

  2. Asadi, D., Sabzehparvar, M., Talebi, H.A.: Damaged airplane flight envelope and stability evaluation. Aircraft Engineering and Aerospace Technology 85(3), 186–198 (2013). https://doi.org/10.1108/00022661311313623

    Article  Google Scholar 

  3. Asadi, D., Sabzehparvar, M., Atkins, E.M., Talebi, H.A.: Damaged airplane trajectory planning based on flight envelope and stability of motion primitives. J. Aircr. 51(6), 1740–1757 (2014). https://doi.org/10.2514/1.C032422

    Article  Google Scholar 

  4. Atkins, E.: Dynamic waypoint generation given reduced flight performance. 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno (2004). https://doi.org/10.2514/6.2004-779

    Book  Google Scholar 

  5. Meuleau, N., Plaunt, C., Smith, D.E., Smith, T.B.: An emergency landing planner for damaged aircraft. In: Proceedings of the Twenty first innovative applications of artificial intelligence conference edited by IAAI (2009)

  6. Atkins, E.M.: Emergency landing automation aids: an evaluation inspired by US airways flight 1549. In: AIAA Infotech@ aerospace conference, Atlanta (2010)

  7. Atkins, E.M., Portillo, I.A., Strube, M.J.: Emergency flight planning applied to total loss of thrust. J. Aircr. 43(4), 1205–1216 (2006). https://doi.org/10.2514/1.18816

    Article  Google Scholar 

  8. Ten Harmsel, J.A., Olson, J.I., Atkins, E.M.: Emergency flight planning for an energy-constrained multicopter. J. Intell. Robot. Syst. (2016) https://doi.org/10.1007/s10846-016-0370-z

  9. LaValle, S.: Planning algorithms. Cambridge University Press, England (2006). Chap. 5

    Book  MATH  Google Scholar 

  10. Meuleau, N., Plaunt, C., Smith, D.E., Smith, T.: A comparison of risk sensitive path planning methods for aircraft emergency landing. In: ICAPS-09 workshop on bridging the gap between task and motion planning (2009)

  11. Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for agile autonomous vehicles. J. Guid. Control. Dyn. 25(1), 116–129 (2002)

    Article  Google Scholar 

  12. Neas, B.C., Farhood, M.: A hybrid architecture for maneuver-based motion planning and control of agile vehicles. In: 18th IFAC World Congress, Milano, August 28 - September 2 (2011)

  13. Sarigul-Klijn, N., Rapetti, R., Jordan, A., Lopez, I., Sarigul-Klijn, M., Nespeca, P.: Intelligent flight trajectory generation to maximize safe outcome probability after a distress event. J. Aircr. 47(1), 255–267 (2010). https://doi.org/10.2514/1.45264

    Article  Google Scholar 

  14. Yi, G., Atkins, E.: Trim State discovery for an adaptive flight planner. In: 48th AIAA aerospace science meeting including the new horizons forum and aerospace exposition, Orlando (2010). https://doi.org/10.2514/6.2010-416

  15. Hwangbo, M., Kuffner, J., Kanade, T.: Efficient two-phase 3D motion planning for small fixed-wing UAVs. In: IEEE international conference on robotics and automation (ICRA), Rome, pp. 10–14 (2007)

  16. Glasius, R., Komoda, A., Gielen, S.: Neural network dynamics for path planning and obstacle avoidance. Neural Netw. 8(1), 125–133 (1995)

    Article  Google Scholar 

  17. Tong, P.: Application of genetic algorithm to a forced landing maneuver on transfer of training analysis. Ph.D. Dissertation, Royal Melbourne Institute of Technology, School of Aerospace, Mechanical and Manufacturing Engineering in the Faculty of Engineering (2006). https://doi.org/10.13140/RG.2.1.2739.3049

  18. Krenzke, T.: Ant colony optimization for agile motion planning. Master’s thesis, Massachusetts Institute of Technology Aerospace Engineering (2006)

  19. Guanjun, M., Haibin, D., Senqi, L.: Improved ant colony algorithm for global trajectory planning of UAV under complex environment. Int. J. Comput. Sci. Appl. 4(3), 57–68 (2007)

    Google Scholar 

  20. Hoskins, A.B., Atkins, E.M.: Satellite formation design with a multi-objective optimization technique. In: AIAA/AAS astrodynamics specialist conference and exhibit, Keystone, p. 6013 (2006)

  21. Betts, J.: Survey of numerical methods for trajectory optimization. J. Guid. Control. Dyn. 21(2), 193–207 (1998). https://doi.org/10.2514/2.4231

    Article  MathSciNet  MATH  Google Scholar 

  22. Frazzoli, E.: Robust hybrid control for autonomous vehicle motion planning. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge (2001)

    Google Scholar 

  23. Karimi, J., Pourtakdoust, H.: Optimal maneuver-based motion planning over terrain and threats using a dynamic hybrid PSO algorithm. Aerosp. Sci. Technol. 26, 60–71 (2013)

    Article  Google Scholar 

  24. Strube, M.: Post-Failure trajectory planning from feasible trim state sequences. Master’s Thesis, Aerospace Engineering, University of Maryland, College Park, Maryland (2005)

    Google Scholar 

  25. Atkins, E.M., Portillo, I.A., Strube, M.J.: Emergency flight planning applied to total loss of thrust. J. Aircr. 43(4), 1205–1216 (2006). https://doi.org/10.2514/1.18816

    Article  Google Scholar 

  26. Tang, Y., Atkins, E.M., Sanner, R.M.: Emergency flight planning for a generalized transport model aircraft with wing damage. In: AIAA guidance, navigation, and control conference, hilton head SC (2007)

  27. Yi, G., Atkins, E.: Trim state discovery for an adaptive flight planner. In: 48th AIAA aerospace science meeting including the new horizons forum and aerospace exposition, Orlando (2010). https://doi.org/10.2514/6.2010-416

  28. Lennon, J.A., Atkins, E.M.: Preference-based trajectory generation. J. Aerosp. Comput. Inf. Commun. 6(3), 142–170 (2009)

    Article  Google Scholar 

  29. Teich, J.: Pareto-front exploration with uncertain objectives. In: Evolutionary multi-criterion optimization, pp. 314–328. Springer, Berlin (2001)

  30. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Structural Multidisciplinary Optimization: a review 26, 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shanon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 8(1), 125–133 (1995)

    MathSciNet  Google Scholar 

  32. Haiwei, W., Geng, L., Zhanduo, Y., Zhongsheng, W.: Entropy-based Evaluation Method of Design Scheme for Helicopter Transmission. TELKOMNIKA 11(6), 3367–3373 (2013)

    Article  Google Scholar 

  33. Guo, F., Wang, H., Tian, Y.: Multi-Objective Path Planning for Unrestricted Mobile. In: Proceeding of the IEEE international conference on automation and logistics, Shenyang (2009)

  34. Bekker, J., Aldrich, C.: The cross-entropy method in multi-objective optimizations: An assessment. Eur. J. Oper. Res. 211, 112–121 (2011)

    Article  MATH  Google Scholar 

  35. Guigue, A., Ahmadi, M., Langlois, R., Hayes, J.D.: Pareto optimality and multi-objective trajectory planning. IEEE Trans. Robot. 26(4), 1094–1099 (2010)

    Article  Google Scholar 

  36. Taboada, H.A., Baheranwala, F., Coit, D.W.: Practical solutions for multi-objective optimization: an application to system reliability design problem. Reliab. Eng. Syst. Saf. 92, 314–322 (2007). https://doi.org/10.1016/j.ress.2006.04.014

    Article  Google Scholar 

  37. Osyczka, A.: An approach to multicriterion optimization problems for engineering design. Comput. Methods Appl. Mech. Eng. 15(3), 309–333 (1978)

    Article  MATH  Google Scholar 

  38. Charnes, A., Cooper, W.W.: Management models and industrial applications of linear programming. Manag. Sci. 4(1), 81–87 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bellman, R.E.: Dynamic programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  40. Murata, J., Ishibuchi, H., Tanaka, H.: Multi-objective genetic algorithm and its application to flow shop scheduling. Comput. Ind. Eng. 30(4), 957–968 (1996)

    Article  Google Scholar 

  41. Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary algorithms for solving multi-objective problems, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  42. Zhang, Y., Gong, D., Zhang, J.: Robot path planning in uncertain environment using multi-objective particle swarm optimization. Neurocomputing 103, 172–185 (2013)

    Article  Google Scholar 

  43. Coello, C.A.: Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored. Frontiers of Computer Science in China 3(1), 18–30 (2009)

    Article  Google Scholar 

  44. Peng, X., Demin, X.C.: Intelligent online path planning for UAVs in adversarial environments. Int. J. Adv. Robot. Syst. 3, 9 (2012). https://doi.org/10.5772/45604

    Google Scholar 

  45. Gong, D.W., Zhang, J.H., Zhang, Y.: Multi-objective particle swarm optimization for robot path planning in environment with danger sources. J. Comput. 8, 6 (2011). https://doi.org/10.4304/jcp.6.8.1554-1561

    Google Scholar 

  46. Pires, E.J.S., Machado, J.A.T., Oliveira, P.B.M.: Manipulator trajectory planning using a MOEA. Applied Soft Computing Journal 7(3), 659–667 (2007)

    Article  Google Scholar 

  47. Castillo, O., Trujillo, L., Melin, P.: Multiple objective genetic algorithms for path planning optimization in autonomous mobile robots. Soft. Comput. 11, 269–279 (2007)

    Article  Google Scholar 

  48. Marcos, M., Machado, T., Perdicoulis, A.: A multi-objective approach to the motion planning of redundant manipulators. Appl. Soft Comput. 21, 589–599 (2012). https://doi.org/10.1016/j.asoc.2011.11.006

    Article  Google Scholar 

  49. Schaffer, J.: Multiple objective optimization with vector evaluated genetic algorithm. In: Proceedings in international conference of genetic algorithm, Pittsburgh (1985)

  50. Yanyang, W., Tietao, W., Xiangju, Q.U.: Study of Multi-Objective fuzzy optimization for path planning. Chin. J. Aeronaut. 25, 51–56 (2012). https://doi.org/10.1016/S1000-9361(11)60361-0

    Article  Google Scholar 

  51. Kim, K.J., Modkowitz, H., Koksalan, H.: Fuzzy versus statistical linear regression. Eur. J. Oper. Res. 92(2), 417–437 (1996)

    Article  MATH  Google Scholar 

  52. Wu, P., Clothier, R., Campbell, D.: Fuzzy multi-objective mission flight planning in unmanned aerial systems. In: Proceedings of the IEEE symposium on computational intelligence in multi-criteria decision making (2007)

  53. Roskam, J.: Chap. 6: Airplane flight dynamics and automatic flight control, part I, pp. 304–306. Design, Analysis and Research Corporation (DARcorporation), Lawrence (1998)

  54. Asadi, D., Bagherzadeh, S.A.: Nonlinear adaptive sliding mode tracking control of an airplane with wing damage. J. Aerosp. Eng., ImechE, Part G 51(6), 1740–1757 (2017). https://doi.org/10.1177/0954410017690546

    Google Scholar 

  55. Gray, M.R.: Chap. 2: Entropy and Information Theory, Stanford University, pp. 17–30. Springer Verlag, New York (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Asadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, D., Atkins, E.M. Multi-Objective Weight Optimization for Trajectory Planning of an Airplane with Structural Damage. J Intell Robot Syst 91, 667–690 (2018). https://doi.org/10.1007/s10846-017-0753-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0753-9

Keywords

Navigation