Abstract
This paper presents a fast scan matching approach to online SLAM supported by a dynamic likelihood field. The dynamic likelihood field plays a central role in the approach: it avoids the necessity to establish direct correspondences; it is the connection link between scan matching and the online SLAM; and it has a low computational complexity. Scan matching is formulated as a non-linear least squares problem that allows us to solve it using Gauss-Newton or Levenberg-Marquardt methods. Furthermore, to reduce the influence of outliers during optimization, a loss function is introduced. The proposed solution was evaluated using an objective benchmark designed to compare different SLAM solutions. Additionally, the execution times of our proposal were also analyzed. The obtained results show that the proposed approach provides a fast and accurate online SLAM, suitable for real-time operation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennewitz, M., Stachniss, C., Behnke, S., Burgard, W.: Utilizing reflection properties of surfaces to improve mobile robot localization. In: 2009 IEEE International Conference on Robotics and Automation, pp. 4287–4292. Kobe, Japan (2009)
Biber, P., Strasser, W.: The normal distributions transform: a new approach to laser scan matching. In: Intelligent Robots and Systems, 2003. (IROS 2003)., pp. 2743–2748 vol. 3. IEEE, Las Vegas, USA (2003)
Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30 (1965)
Burguera, A., González, Y., Oliver, G.: On the use of likelihood fields to perform sonar scan matching localization. Auton. Robot. 26(4), 203–222 (2009)
Castellanos, J., Martinez-Cantin, R., Tardós, J., Neira, J.: Robocentric map joining: improving the consistency of EKF-SLAM. Robot. Auton. Syst. 55(1), 21–29 (2007)
Castellanos, J.A., Tardos, J.D., Schmidt, G.: Building a Global Map of the Environment of a Mobile Robot: The Importance of Correlations. In: Proceedings of International Conference on Robotics and Automation, vol. 2, pp. 1053–1059. New Mexico, USA (1997)
Censi, A.: An ICP variant using a point-to-line metric. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), pp. 19–25. Pasadena, CA, USA (2008)
Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions. Tech. Rep. Cornell University, New York (2004)
Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)
Grisetti, G., Stachniss, C., Grzonka, S., Burgard, W.: A tree parameterization for efficiently computing maximum likelihood maps using gradient descent. In: Proceedings of Robotics: Science and Systems (RSS). Atlanta, USA (2007)
Hall, B.: Lie groups, lie algebras, and representations: an elementary introduction, vol. 222. Springer, Berlin (2015)
Hertzberg, C.: A Framework for Sparse, Non-Linear Least Squares Problems on Manifolds. Master’s thesis. Universität Bremen, Germany (2008)
Holz, D., Behnke, S.: Sancta Simplicitas - On the efficiency and achievable results of SLAM using ICP-based Incremental Registration. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), pp. 1380–1387. Alaska, USA (2010)
Howard, A., Roy, N.: The robotics data set repository (Radish). radish.sourceforge.net (2003)
Jesus, F., Ventura, R.: Combining Monocular And Stereo Vision In 6D-SLAM for The Localization of a Tracked Wheel Robot. In: 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–6. Texas, USA (2012)
Kohlbrecher, S., von Stryk, O., Meyer, J., Klingauf, U.: A Flexible and Scalable SLAM System with Full 3D Motion Estimation. In: Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 155–160. Kyoto, Japan (2011)
Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., Kleiner, A.: On measuring the accuracy of SLAM algorithms. Auton. Robot. 27(4), 387–407 (2009)
Lau, B., Sprunk, C., Burgard, W.: Efficient grid-based spatial representations for robot navigation in dynamic environments. Robot. Auton. Syst. 61(10), 1116–1130 (2013)
Lee, J.M.: Smooth manifolds. In: Introduction to Smooth Manifolds, pp. 1–29. Springer (2003)
Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Auton. Robot. 4 (4), 333–349 (1997)
Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2D range scans. J. Intell. Robot. Syst. 18(3), 249–275 (1997)
Madsen, K., Bruun, H., Tingleff, O.: Methods for non-linear least squares problems. Tech. rep., Informatics and Mathematical Modelling. Technical University of Denmark, Denmark (2004)
Montemerlo, M., Thrun, S.: Simultaneous Localization and Mapping With Unknown Data Association Using FastSLAM. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), vol. 2, pp. 1985–1991 (2003)
Montesano, L., Minguez, J., Montano, L.: Probabilistic scan matching for motion estimation in unstructured environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3499–3504 (2005)
Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Mag. 9(2), 61 (1988)
Neira, J., Tardos, J.: Data association in stochastic mapping using the joint compatibility test. IEEE Trans. Robot. Autom. 17(6), 890–897 (2001)
Olson, E.B.: Real-Time Correlative Scan Matching. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), pp. 4387–4393. Kobe, Japan (2009)
Pfister, S.T., Kriechbaum, K.L., Roumeliotis, S.I., Burdick, J.W.: Weighted range sensor matching algorithms for mobile robot displacement estimation. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), vol. 2, pp. 1667–1674. Washington, DC, USA (2002)
Platinsky, L., Davison, A.J., Leutenegger, S.: Monocular Visual Odometry: Sparse Joint Optimisation or Dense Alternation?. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5126–5133 (2017)
Smith, R.C., Cheeseman, P.: On the representation and estimation of spatial uncertainty. Int. J. Robot. Res. 5(4), 56–68 (1986)
Stachniss, C., Leonard, J.J., Thrun, S.: Simultaneous Localization and Mapping. In: Siciliano, B., Khatib, O. (eds.) Springer Handproceedings of Robotics, pp. 1153–1176. Springer International Publishing, Cham (2016)
Thrun, S.: A probabilistic on-line mapping algorithm for teams of mobile robots. Int. J. Robot. Res. 20(5), 335–363 (2001)
Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics, vol. 1. MIT Press, Cambridge (2005)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice, Lecture Notes in Computer Science, vol. 1883, pp. 298–372. Springer Berlin Heidelberg (2000)
Acknowledgements
This research is supported by: National Funds through FCT - Foundation for Science and Technology, in the context of the project UID/CEC/00127/2013; and by European Union’s FP7 under EuRoC grant agreement CP-IP 608849.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pedrosa, E., Pereira, A. & Lau, N. A Non-Linear Least Squares Approach to SLAM using a Dynamic Likelihood Field. J Intell Robot Syst 93, 519–532 (2019). https://doi.org/10.1007/s10846-017-0763-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-017-0763-7