Skip to main content
Log in

Intelligent environment recognition and prediction for NDT inspection through autonomous climbing robot

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a novel approach to environment mapping prediction with focus on autonomous climbing robot to NDT (Non-Destructive Technique) inspection. In industrial installations, the inspection of non-planar surfaces requires that NDT probes passe on whole surface, while the autonomous robot navigates over an unknown environment based only on its perception abilities. However, the path planning of inspection is not a trivial task specially when there is no precise information about environment. In this work, a special kind of climbing robot is used to inspect large metallic surfaces such as spherical pressure vessels used to store Liquified Petroleum Gas (LPG). The robot has adherence skills that allow it to safely navigate through the internal and external surface of the vessel. As a result, robot mobility suffers from hard magnetic adhesion constraints. A new approach is proposed to environment detailed prediction, including specific characteristic (like weld beads and plates) of inspected surface. The goal is the automatic extraction of some environment characteristics to predict the storage tank dimensions and robot localization, based on a group of 3D perception sources (laser rangefinder, light detection and ranging and depth camera) mounted over a rolling platform to improve its reach. The environment prediction is carried out after the robot visually detects two or more weld beads corners. A multi-measuring environment is firstly build by Fuzzy data fusion of the different perception measurements allowing to estimate plates and weld beads based on design and safety standards. Virtual and real experiments are carried out to illustrate proposed method performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ren, X., Fox, D., Konolige, K.: Change their perception: Rgb-d for 3-d modeling and recognition. IEEE Robot. Autom. Mag. 20(4), 49–59 (2013)

    Article  Google Scholar 

  2. Browatzki, B., Tikhanoff, V., Metta, G., Bülthoff, H.H., Wallraven, C.: Active object recognition on a humanoid robot. In: 2012 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp 2021–2028 (2012)

  3. Singh, A., Sha, J., Narayan, K.S., Achim, T., Abbeel, P.: Bigbird: A large-scale 3d database of object instances. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp 509–516 (2014)

  4. Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-d mapping with an rgb-d camera. IEEE Trans. Robot. 30(1), 177–187 (2014)

    Article  Google Scholar 

  5. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: Octomap: An efficient probabilistic 3d mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013)

    Article  Google Scholar 

  6. Lee, Y.-J., Song, J.-B., Choi, J.-H.: Performance improvement of iterative closest point-based outdoor slam by rotation invariant descriptors of salient regions. J. Intell. Robot. Syst. 71(3-4), 349–360 (2013)

    Article  Google Scholar 

  7. Prankl, J., Aldoma, A., Svejda, A., Vincze, M.: Rgb-d object modelling for object recognition and tracking. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp 96–103 (2015)

  8. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., et al.: Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th annual ACM symposium on User interface software and technology. ACM, pp 559–568 (2011)

  9. Chang, H.J., Lee, C.G., Lu, Y.-H., Hu, Y.C.: P-slam: Simultaneous localization and mapping with environmental-structure prediction. IEEE Trans. Robot. 23(2), 281–293 (2007)

    Article  Google Scholar 

  10. Chung, S.Y., Huang, H.P.: Simultaneous topological map prediction and moving object trajectory prediction in unknown environments. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp 1594–1599 (2008)

  11. Wermelinger, M., Fankhauser, P., Diethelm, R., Krüsi, P., Siegwart, R., Hutter, M.: Navigation planning for legged robots in challenging terrain. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp 1184–1189 (2016)

  12. Sermanet, P., Hadsell, R., Scoffier, M., Muller, U., LeCun, Y.: Mapping and planning under uncertainty in mobile robots with long-range perception. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. IROS. IEEE, pp 2525–2530 (2008)

  13. Santos, H.B., Teixeira, M.A.S., Oliveira, A.S., Arruda, L.V.R., Neves-Jr, F.: Scheduled fuzzy controllers for omnidirectional motion of an autonomous inspection robot with four fully steerable magnetic wheels. In: XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium, pp 263–268 (2016)

  14. Espinoza, R.V., de Oliveira, A.S., de Arruda, L.V.R., Neves-Jr, F.: Navigation’s stabilization system of a magnetic adherence-based climbing robot. J. Intell. Robot. Syst. 78(1), 65–81 (2015)

    Article  Google Scholar 

  15. Espinoza, R.V., de Oliveira, A.S., de Arruda, L.V.R., Junior, N.F.: Adhesion loss prediction of a climbing robot through magnetic field analysis by artificial neural networks. In: 22nd International Congress of Mechanical Engineering, pp 3–7 (2013)

  16. de Oliveira, A., de Arruda, L., Neves-Jr, F., Espinoza, R., Nadas, J.: Adhesion force control and active gravitational compensation for autonomous inspection in lpg storage spheres. In: Robotics Symposium and Latin American Robotics Symposium (SBR-LARS), 2012 Brazilian, pp 232–238 (2012)

  17. Santos, H.B., Teixeira, M.A.S., de Oliveira, A.S., de Arruda, L.V.R., Neves-Jr, F.: Quasi-omnidirectional fuzzy control of a climbing robot for inspection tasks, Journal of Intelligent & Robotic Systems (2017)

  18. Teixeira, M.A.S., Santos, H.B., Oliveira, A.S., Arruda, L.V.R., Neves-Jr, F.: Environment identification and path planning for autonomous ndt inspection of spherical storage tanks. In: XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium, pp 193–198 (2016)

  19. Pahlberg, T., Hagman, O., Thurley, M.: Recognition of boards using wood fingerprints based on a fusion of feature detection methods. Comput. Electron. Agric. 111, 164–173 (2015)

    Article  Google Scholar 

  20. Senthilkumaran, N., Rajesh, R.: Edge detection techniques for image segmentation–a survey of soft computing approaches. Int. J. Recent Trends Eng. 1(2), 250–254 (2009)

    Google Scholar 

  21. Dougherty, E.R., Lotufo, R.A.: T. I. S. for Optical Engineering SPIE, Hands-on morphological image processing. SPIE Optical Engineering Press Washington, vol. 71 (2003)

  22. Muralikrishnan, B., Raja, J.: Computational surface and roundness metrology. Springer Science &Business Media, Berlin (2008)

    Google Scholar 

  23. Moss, D.R., Basic, M.M.: Pressure vessel design manual. Butterworth-Heinemann, Oxford (2012)

    Google Scholar 

  24. N-268: Fabrication of Pressure Vessels, PETROBRAS Technical Standards, Std (2012)

  25. N-1281: Design, Fabrication, and Assembly of Spheres, PETROBRAS Technical Standards, Std (2014)

  26. N-1520: Storage Spheres - Data Sheet, PETROBRAS Technical Standards, Std (2010)

  27. N-2111: Safety in Cleanup, Inspection and Repair of Storage Tanks and Pressure Vessels, PETROBRAS Technical Standards, Std (2011)

  28. Passino, K.M., Yurkovich, S., Reinfrank, M.: Fuzzy control, vol. 20. Addison-wesley Reading, Boston (1998)

    Google Scholar 

  29. de Jesús Rubio, J., Bouchachia, A.: Msafis: an evolving fuzzy inference system. Soft Comput. 21(9), 2357–2366 (2017)

    Article  Google Scholar 

  30. Haykin, S., Network, N.: A comprehensive foundation. Neural Netw. 2(2004), 41 (2004)

    Google Scholar 

  31. Rekabdar, B., Nicolescu, M., Kelley, R., Nicolescu, M.: An unsupervised approach to learning and early detection of spatio-temporal patterns using spiking neural networks. J. Intell. Robot. Syst. 80, 83 (2015)

    Article  Google Scholar 

  32. Zurada, J.M.: Introduction to artificial neural systems. West St. Paul, vol. 8 (1992)

  33. de Jess Rubio, J.: Stable kalman filter and neural network for the chaotic systems identification. J. Frankl. Inst. 354(16), 7444–7462 (2017). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0016003217304325

    Article  MathSciNet  Google Scholar 

  34. de Jess Rubio, J.: Discrete time control based in neural networks for pendulums, Applied Soft Computing. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1568494617302387 (2017)

  35. Rohmer, E., Singh, S.P., Freese, M.: V-rep: A versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp 1321–1326 (2013)

  36. Teixeira, M.A.S., Dalmedico, N., Barbosa, H.S., de Oliveira, A.S., de Arruda, L.V.R., Neves, F.: Enhancing robot capabilities of environmental perception through embedded gpu. In: 2017 Brazilian Symposium on Computing System Engineering (SBESC). IEEE (2017)

Download references

Acknowledgements

The authors thanks to National Counsel of Technological and Scientific Development of Brazil (CNPq), Coordination for the Improvement of Higher Level People (CAPES), National Agency of Petroleum, Natural Gas and Biofuels (ANP) together with the Financier of Studies and Projects (FINEP) and Brazilian Ministry of Science, Technology and Innovation (MCTI) through the ANP Human Resources Program for the Petroleum and Gas Sector - PRH-ANP/MCTI PRH10-UTFPR for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonio Simoes Teixeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, M.A.S., Santos, H.B., Dalmedico, N. et al. Intelligent environment recognition and prediction for NDT inspection through autonomous climbing robot. J Intell Robot Syst 92, 323–342 (2018). https://doi.org/10.1007/s10846-017-0764-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0764-6

Keywords

Navigation