Abstract
A standard control systems objective is to achieve stable motion on a trajectory in the state-control space configuration compatible with the system dynamics. Path following and trajectory tracking are typical methods to accomplish this goal. This work uses a version of the path following technique, called maneuvering, to drive a quadrotor to the desired path. In maneuvering, the desired path is a geometric curve parameterized in terms of the path-variable. The path-variable can be employed to fulfill an assignment of speed or acceleration on the path. To obtain experimental results using an indoor positioning system, a quadrotor velocity observer becomes necessary; thus, a velocity observer and a constant disturbance estimator, based on the immersion and invariance technique (Astolfi et al. 2008), are proposed to complement the maneuvering controller. Timescale separation between the quadrotor translational and rotational dynamics is instrumental in the closed-loop stability analysis.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aguiar, A.P., Dacić, D.B., Hespanha, J.P., Kokotović, P.: Path-following or reference tracking?: an answer relaxing the limits to performance. In: IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, 5–7 July 2004, pp. 167–172. https://doi.org/10.1016/S1474-6670(17)31970-5. http://www.sciencedirect.com/science/article/pii/S1474667017319705 (2004)
Aguiar, A.P., Hespanha, J.P.: Logic-based switching control for trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. In: Proceedings of the 2004 American Control Conference, vol. 4, pp 3004–3010 (2004)
Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–1379 (2007). https://doi.org/10.1109/TAC.2007.902731
Aguiar, A.P., Hespanha, J.P., Kokotovic, P.V.: Path-following for nonminimum phase systems removes performance limitations. IEEE Trans. Autom. Control 50(2), 234–239 (2005). https://doi.org/10.1109/TAC.2004.841924
Al-Hiddabi, S.A., McClamroch, N.H.: Tracking and maneuver regulation control for nonlinear nonminimum phase systems: application to flight control. IEEE Trans. Control Syst. Technol. 10 (6), 780–792 (2002). https://doi.org/10.1109/TCST.2002.804120
Astolfi, A., Karagiannis, D., Ortega, R.: Nonlinear and Adaptive Control with Applications. Springer, London (2008)
Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications, vol. 2. Springer Science & Business Media (2011)
Corona-Sanchez, J.J., Rodríguez-Cortés, H.: Path following control for the cartesian position of the quadrotor. In: Memoria XV Congreso Latinoamericano de Control Automatico (2012)
Corona-Sánchez, J.J., Rodríguez-Cortés, H.: An output maneuvering approach to control the cartesian position of the quadrotor helicopter. In: 52nd IEEE Conference on Decision and Control, pp 1640–1645 (2013). https://doi.org/10.1109/CDC.2013.6760117
Encarnacao, P., Pascoal, A.: Combined trajectory tracking and path following: an application to the coordinated control of autonomous marine craft. In: Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), vol. 1, pp 964–969 (2001), https://doi.org/10.1109/.2001.980234
Encarnacao, P., Pascoal, A., Arcak, M.: Path following for marine vehicles in the presence of unknown currents1. IFAC Proc. 33(27), 507–512 (2000). https://doi.org/10.1016/S1474-6670(17)37980-6. http://www.sciencedirect.com/science/article/pii/S1474667017379806. 6th IFAC Symposium on Robot Control (SYROCO 2000), Vienna, Austria, 21–23 September 2000
Guerrero-Bonilla, L., Mohta, K., Bhattacharya, S., Kumar, V.: Flight trajectory tracking and recovery in presence of large disturbances. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1438–1446 (2017). https://doi.org/10.1109/ICUAS.2017.7991473
Hauser, J., Hindman, R.: Maneuver regulation from trajectory tracking: feedback linearizable systems*. IFAC Proc. 28(14), 595–600 (1995).https://doi.org/10.1016/S1474-6670(17)46893-5. http://www.sciencedirect.com/science/article/pii/S1474667017468935. 3rd IFAC Symposium on Nonlinear Control Systems Design 1995, Tahoe City, CA, USA, 25–28 June 1995
Khalil, H.K.: Nonlinear Systems. Prentice Hall, Englewood Cliffs (2002)
Lee, T., Leok, M., McClamroch, N.H.: Nonlinear robust tracking control of a quadrotor uav on se(3). Asian J. Control 15(2), 391–408 (2013). https://doi.org/10.1002/asjc.567
Lin, W., Qian, C.: Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems. Syst. Control Lett. 39(5), 339–351 (2000). https://doi.org/10.1016/S0167-6911(99)00115-2. http://www.sciencedirect.com/science/article/pii/S0167691199001152
Liu, H., Bai, Y., Lu, G., Shi, Z., Zhong, Y.: Robust tracking control of a quadrotor helicopter. J. Intell. Robot. Syst. 75(3), 595–608 (2014). https://doi.org/10.1007/s10846-013-9838-2
Mendoza-Soto, J.L., Corona-Sánchez, J.J., Rodríguez-Cortés, H.: Partial state robust output maneuvering controller applied to a quadcopter vehicle. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 362–368, Miami (2017)
Radmanesh, M., Kumar, M., Sarim, M.: On the effect of different splines on way-point navigation of quad-copters. In: Proceedings of ASME 2016 Dynamic Systems and Control Conference, pp 1–10, Minneapolis (2016)
Raffo, G.V., Ortega, M.G., Rubio, F.R.: Nonlinear \(h_{\infty }\) controller for the quad rotor helicopter with input coupling. In: Preprints of the 18th IFAC World Congress, pp. 13,834–13,839. Milano (Italy) (2011)
Rezapour, E., Hofmann, A., Pettersen, K.Y.: Maneuvering control of planar snake robots based on a simplified model. In: 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), pp 548–555 (2014). https://doi.org/10.1109/ROBIO.2014.7090388
Sepulchre, R., Jankovic, M., Kokotovic, P.V.: Constructive Nonlinear Control. Springer, London (1997)
Skjetne, R., Fossen, T.I., Kokotovic, P.: Output maneuvering for a class of nonlinear systems. IFAC Proc. 35(1), 501–506 (2002). https://doi.org/10.3182/20020721-6-ES-1901.00245. http://www.sciencedirect.com/science/article/pii/S1474667015386663. 15th IFAC World Congress
Skjetne, R., Fossen, T.I., Kokotovic, P.V.: Robust output maneuvering for a class of nonlinear systems. Automatica 40(3), 373–383 (2004). https://doi.org/10.1016/j.automatica.2003.10.010. http://www.sciencedirect.com/science/article/pii/S0005109803003467
Skjetne, R., Teel, A.R.: Maneuvering dynamical systems by sliding-mode control. In: Proceedings of the 2004 American Control Conference, vol. 2, pp 1277–1282 (2004)
Wei, C., Wu, Y., Wang, Q.: Robust practical output maneuvering for a class of nonlinear systems. In: 2006 6th World Congress on Intelligent Control and Automation, vol. 1, pp 790–794 (2006), https://doi.org/10.1109/WCICA.2006.1712451
Wei, C., Wu, Y., Fei, S.: Adaptive practical output maneuvering control for a class of nonlinear systems. J. Syst. Sci. Complex. 20(1), 75–84 (2007). https://doi.org/10.1007/s11424-007-9006-5
Acknowledgements
This work was funded by CONACyT through a posdoctoral research fellowship to Dr. José Luis Mendoza Soto.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mendoza-Soto, J.L., Corona-Sánchez, J.J. & Rodríguez- Cortés, H. Quadcopter Path Following Control. A Maneuvering Approach. J Intell Robot Syst 93, 73–84 (2019). https://doi.org/10.1007/s10846-018-0801-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-018-0801-0