Skip to main content
Log in

A Multi-Time-Scale Finite Time Controller for the Quadrotor UAVs with Uncertainties

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A control method with a multi-time-scale structure is proposed to perform finite time motion control of the quadrotor unmanned aerial vehicles (UAVs) with uncertainties. In order to facilitate the controller-design, finite time extended state observer (ESO) in the first and second time scales is applied to estimate the system uncertainties; the attitude controllers and the height controller are designed for finite time stabilization of the equilibriums in the third time scale; and finally, the output feedback technique is utilized to design the horizontal auxiliary controllers, meanwhile the reference angles are settled for the attitude dynamics in the fourth and slowest time scale. It allows us to analyze the system dynamics in each time scale independently, and conclusions on finite time stabilization are achieved gradually with a large region of attraction. Simulation and experimental results on the Qball2 platform are given to verify the efficacy of the strategy and establish the feasibility of implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. López-Estrada, F.R., Ponsart, J.C., Theilliol, D., et al.: LPV model-based tracking control and robust sensor fault diagnosis for a quadrotor UAV. J. Intell. Robot. Syst. 84(1–4), 163–177 (2016)

    Article  Google Scholar 

  2. Şenkul, A.F., Altuǧ, E.: System design of a novel tilt-roll rotor quadrotor UAV. J. Intell. Robot. Syst. 84(1–4), 575–599 (2016)

    Google Scholar 

  3. Aboutalebi, P., Abbaspour, A., Forouzannezhad, P., et al.: A novel sensor fault detection in an unmanned quadrotor based on adaptive neural observer. J. Intell. Robot. Syst. 2017, 1–12 (2017)

    Google Scholar 

  4. Chen, F., Lei, W., Zhang, K., et al.: A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer. Nonlinear Dyn. 2016, 1–15 (2016)

    MATH  Google Scholar 

  5. Tan, C.K., Wang, J., Paw, Y.C., et al.: Tracking of a moving ground target by a quadrotor using a backstepping approach based on a full state cascaded dynamics. Appl. Soft Comput. 47, 47–62 (2016)

    Article  Google Scholar 

  6. Dydek, Z.T., Annaswamy, A.M., Lavretsky, E.: Adaptive control of quadrotor UAVs: A design trade study with flight evaluations. IEEE Trans. Control Syst. Technol. 21(4), 1400–1406 (2013)

    Article  Google Scholar 

  7. Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear H8 control structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sumantri, B., Uchiyama, N., Sano, S.: Least square based sliding mode control for a quadrotor helicopter and energy saving by chattering reduction. Mech. Syst. Signal Process. 66, 769–784 (2016)

    Article  Google Scholar 

  9. Xiong, J.J., Zhang, G.B.: Global fast dynamic terminal sliding mode control for a quadrotor UAV. ISA Trans., 1–8 (2016)

  10. Zhao, B., Xian, B., Zhang, Y., et al.: Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology. IEEE Trans. Indust. Electron. 62(5), 2891–2902 (2015)

    Article  Google Scholar 

  11. Das, A., Subbarao, K., Lewis, F.: Dynamic inversion with zero-dynamics stabilization for quadrotor control. IET Control Theory Appl. 3(3), 303–314 (2009)

    Article  MathSciNet  Google Scholar 

  12. Li, S., Wang, Y., Tan, J., et al.: Adaptive RBFNNs/integral sliding mode control for a quadrotor aircraft. Neurocomputing 216, 126–134 (2016)

    Article  Google Scholar 

  13. Abbaspour, A., Sadati, S.H., Sadeghi, M.: Nonlinear optimized adaptive trajectory control of helicopter. Control Theory Technol. 13(4), 297–310 (2015)

    Article  MATH  Google Scholar 

  14. Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Netw. 21(1), 50–66 (2010)

    Article  Google Scholar 

  15. Cao, N., Lynch, A.F.: Inner-outer loop control for quadrotor UAVs with input and state constraints. IEEE Trans. Control Syst. Technol. 24(5), 1797–1804 (2016)

    Article  Google Scholar 

  16. Zhao, B., Xian, B., Zhang, Y., et al.: Nonlinear robust sliding mode control of a quadrotor unmanned aerial vehicle based on immersion and invariance method. Int. J. Robust Nonlinear Control 25(18), 3714–3731 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xiong, J.J., Zheng, E.H.: Position and attitude tracking control for a quadrotor UAV. ISA Trans. 53(3), 725–731 (2014)

    Article  MathSciNet  Google Scholar 

  18. Wang, C., Song, B., Huang, P., et al.: Trajectory tracking control for quadrotor robot subject to payload variation and wind gust disturbance. J. Intell. Robot. Syst. 83(2), 315–333 (2016)

    Article  Google Scholar 

  19. Xian, B., Diao, C., Zhao, B., et al.: Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation. Nonlinear Dyn. 79(4), 2735–2752 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mohammadi, M., Shahri, A.M.: Adaptive nonlinear stabilization control for a quadrotor UAV: Theory, simulation and experimentation. J. Intell. Robot. Syst. 72(1), 105–122 (2013)

    Article  Google Scholar 

  21. Dong, W., Gu, G.Y., Zhu, X., et al.: A high-performance flight control approach for quadrotors using a modified active disturbance rejection technique. Robot. Auton. Syst. 83, 177–187 (2016)

    Article  Google Scholar 

  22. Pérez-Alcocer, R., Moreno-Valenzuela, J., Miranda-Colorado, R.: A robust approach for trajectory tracking control of a quadrotor with experimental validation. ISA Trans. 65, 262–274 (2016)

    Article  Google Scholar 

  23. Lee, J., Mukherjee, R., Khalil, H.K.: Output feedback stabilization of inverted pendulum on a cart in the presence of uncertainties. Automatica 54, 146–157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ravichandran, M.T., Mahindrakar, A.D.: Robust stabilization of a class of underactuated mechanical systems using time scaling and Lyapunov redesign. IEEE Trans. Indust. Electron. 58(9), 4299–4313 (2011)

    Article  Google Scholar 

  25. González-Vázquez, S., Moreno-Valenzuela, J.: Motion control of a quadrotor aircraft via singular perturbations. Int. J. Adv. Robot. Syst 10(10), 1–16 (2013)

    Article  Google Scholar 

  26. Izaguirre-Espinosa, C., Muñoz-Vázquez, A.J., Sánchez-Orta, A., et al.: Attitude control of quadrotors based on fractional sliding modes: theory and experiments. IET Control Theory Appl. 10(7), 825–832 (2016)

    Article  MathSciNet  Google Scholar 

  27. Wang, H., Zhou, Z., Hao, C., et al.: FTESO-based finite time control for underactuated system within a bound input. Asian J. Control (2018)

  28. Tan, C.P., Yu, X., Man, Z.: Terminal sliding mode observers for a class of nonlinear systems. Automatica 46(8), 1401–1404 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shen, Y., Huang, Y., Gu, J.: Global finite-time observers for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 56(2), 418–424 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Su, Y., Zheng, C.: Robust finite-time output feedback control of perturbed double integrator. Automatica 60, 86–91 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17(2), 101–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, S., Ding, S., Tian, Y.: A finite-time state feedback stabilization method for a class of second order nonlinear systems. Acta Automat. Sinica 33(1), 101–104 (2007)

    Article  MathSciNet  Google Scholar 

  34. Yu, S., Yu, X., Shirinzadeh, B., et al.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Quanser: User Manual Qball 2 for QUARC. Set up and Configuration (2014)

Download references

Acknowledgments

This work is supported by NSFC under grant 61473248 and Natural Science Foundation of Hebei Province under grant F2016203496.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Wang, H., Hu, Z. et al. A Multi-Time-Scale Finite Time Controller for the Quadrotor UAVs with Uncertainties. J Intell Robot Syst 94, 521–533 (2019). https://doi.org/10.1007/s10846-018-0837-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0837-1

Keywords

Navigation