Skip to main content

Advertisement

Log in

Discontinuous Stabilizing Control of Skid-Steering Mobile Robot (SSMR)

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A discontinuous stabilizing control of Skid-Steering Mobile Robot (SSMR) is proposed using σ transformation introduced in Astolfi (Syst. Control Lett. 27(1), 37–45, 1996). A linear time-invariant system (LTI) is obtained which is driven by state-dependent disturbance. A linear H controller is designed to reduce the effect of this disturbance. Two control transformations are carried out in order to bring the system in a form suitable for σ transformation; one for the case of SSMR orientation around 0 and π and the other around ± π/2. The resulting two controllers for the two cases are blended using fuzzy logic. The closed-loop system is simulated using Matlab environment on point stabilization from different initial conditions. Results show that the proposed controller guarantees asymptotic stability with smooth paths. Experimental results are consistent with simulation and show that the proposed controller succeeded to stabilize the SSMR to the desired point without shuttering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astolfi, A.: Discontinuous control of nonholonomic systems. Syst. Control Lett. 27(1), 37–45 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wong, J.Y.: Theory of Ground Vehicles. Wiley, New York (2001)

    Google Scholar 

  3. Brockett, R.W. et al.: Asymptotic Stability and Feedback Stabilization. Differential geometric control theory 27(1), 181–191 (1983)

    MathSciNet  MATH  Google Scholar 

  4. Tayebi, A., Tadjine, M., Rachid, A.: Path-following and point-stabilization control laws for a wheeled mobile robot. In: UKACC International Conference on Control’96 (Conf. Publ. No. 427), vol. 2, pp 878–883. IET (1996)

  5. Coron, J.-M.: Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Syst. 5(3), 295–312 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ke-Cai, C.: Global κ-exponential tracking control of nonholonomic systems in chained-form by output feedback. Acta Automat. Sin. 35(5), 568–576 (2009)

    Article  MathSciNet  Google Scholar 

  7. Pazderski, D., Kozlowski, K.R.: Trajectory tracking control of skid-steering robot-experimental validation. In: World Congress, vol. 17, no. 1, pp. 5377–5382 (2008)

  8. Ibrahim, F., Abouelsoud, A., Elbab, A.M.F.: Time-varying fuzzy logic controller of skid-steering mobile robot based on lyapunov stability. In: 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp 1–6. IEEE (2016)

  9. Chen, C.-Y., Li, T.-H.S., Yeh, Y.-C., Chang, C.-C.: Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronics 19(2), 156–166 (2009)

    Article  Google Scholar 

  10. Yang, J.-M., Kim, J.-H.: Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans. Robot. Autom. 15(3), 578–587 (1999)

    Article  Google Scholar 

  11. Martins, N.A., Elyoussef, E.S., Bertol, D.W., De Pieri, E.R., Moreno, U.F., Castelan, E.d.B.: Trajectory tracking of a nonholonomic mobile robot with kinematic disturbances: a variable structure control design. IEEE Lat. Am. Trans. (Revista IEEE America Latina) 9(3), 276–283 (2011)

    Article  Google Scholar 

  12. Morin, P., Samson, C.: Control of nonholonomic mobile robots based on the transverse function approach. IEEE Trans. Robot. 25(5), 1058–1073 (2009)

    Article  Google Scholar 

  13. Cui, M., Liu, W., Liu, H., Lü, X.: Unscented kalman filter-based adaptive tracking control for wheeled mobile robots in the presence of wheel slipping. In: 2016 12th World Congress on Intelligent Control and Automation (WCICA), pp 3335–3340. IEEE (2016)

  14. Li, X., Wang, Z., Chen, X., Zhu, J., Chen, Q.: Adaptive control of unicycle-type mobile robots with longitudinal slippage. In: American Control Conference (ACC), 2016, pp 1637–1642. IEEE (2016)

  15. Martins, N.A., Bertol, D., Lombardi, W., Pieri, E.R., Castelan, E.B.: Trajectory tracking of a nonholonomic mobile robot with parametric and nonparametric uncertainties: a proposed neural control. In: 2008 16th Mediterranean Conference on Control and Automation, pp 315–320. IEEE (2008)

  16. Jarzebowska, E.M.: Advanced programmed motion tracking control of nonholonomic mechanical systems. IEEE Trans. Robot. 24(6), 1315–1328 (2008)

    Article  Google Scholar 

  17. Scaglia, G., Serrano, E., Rosales, A., Albertos, P.: Linear interpolation based controller design for trajectory tracking under uncertainties: application to mobile robots. Control. Eng. Pract. 45, 123–132 (2015)

    Article  Google Scholar 

  18. Hu, C., Jing, H., Wang, R., Yan, F., Chadli, M.: Robust H output-feedback control for path following of autonomous ground vehicles. Mech. Syst. Signal Process. 70, 414–427 (2016)

    Article  Google Scholar 

  19. Lepej, P., Maurer, J., Uran, S., Steinbauer, G.: Dynamic arc fitting path follower for skid-steered mobile robots. Int. J. Adv. Robot. Syst. 12(10), 139 (2015)

    Article  Google Scholar 

  20. Boonporm, P.: Skid steer mobile robot path tracking with control gain adjustment by yaw rate compensation. Romanian Review Precision Mechanics, Optics & Mechatronics 50, 136–141 (2016)

    Google Scholar 

  21. Lu, X., Fei, J.: Velocity tracking control of wheeled mobile robots by fuzzy adaptive iterative learning control. In: Control and Decision Conference (CCDC), 2016 Chinese, pp 4242–4247. IEEE (2016)

  22. Tayebi, A., Rachid, A.: A unified discontinuous state feedback controller for the path-following and the point-stabilization problems of a unicycle-like mobile robot. In: Proceedings of the 1997 IEEE International Conference on Control Applications, 1997, pp 31–35. IEEE (1997)

  23. Lin, W., Pongvuthithum, R., Qian, C.: Control of high-order nonholonomic systems in power chained form using discontinuous feedback. IEEE Trans. Autom. Control 47(1), 108–115 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fontes, F., Magni, L., et al.: Min-max model predictive control of nonlinear systems using discontinuous feedbacks. IEEE Trans. Autom. Control 48(10), 1750–1755 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Urakubo, T.: Discontinuous feedback stabilization of a class of nonholonomic systems based on lyapunov control. In: Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo’05, pp 91–96. IEEE (2005)

  26. Figueiredo, L.C., Jota, F.G.: Nonholonomic systems stabilization and tracking control using discontinuous control. In: IEEE International Conference on Automation Science and Engineering, 2005, pp 142–147. IEEE (2005)

  27. Duong, S.C., Kinjo, H., Uezato, E., Yamamoto, T.: A discontinuous control of a nonholonomic wheeled mobile robot. In: ICCAS-SICE, 2009, pp 2464–2467. IEEE (2009)

  28. Astolfi, A.: Exponential stabilization of a wheeled mobile robot via discontinuous control. Transactions-American Society Of Mechanical Engineers Journal Of Dynamic Systems Measurement And Control 121, 121–125 (1999)

    Article  Google Scholar 

  29. Jun, J.-Y., Hua, M.-D., Benamar, F.: A trajectory tracking control design for a skid-steering mobile robot by adapting its desired instantaneous center of rotation. In: 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), pp 4554–4559. IEEE (2014)

  30. Dogru, S., Marques, L.: Estimation of rotational speeds of skid-steered wheeled mobile robots using an improved kinematic model. In: 2017 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp 73–78. IEEE (2017)

  31. Jun, J.-Y., Hua, M.-D., Benamar, F.: A robust trajectory tracking controller for four-wheel skid-steering mobile robots. arXiv:1404.4839 (2014)

  32. Dong, J.F., Sabastian, S.E., Lim, T.M., Li, Y.P.: Autonomous in-door vehicles. In: Handbook of Manufacturing Engineering and Technology, pp 2301–2346. Springer (2015)

  33. Kozłowski, K., Pazderski, D.: Modeling and control of a 4-wheel skid-steering mobile robot. Int. J. Appl. Math. Comput. Sci. 14, 477–496 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Trentelman, H., Stoorvogel, A.A., Hautus, M.: Control Theory for Linear Systems. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  35. Perruquetti, W., Barbot, J.-P.: Sliding Mode Control in Engineering. CRC Press, Boca Raton (2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fady Ibrahim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, F., Abouelsoud, A.A., Fath El Bab, A.M.R. et al. Discontinuous Stabilizing Control of Skid-Steering Mobile Robot (SSMR). J Intell Robot Syst 95, 253–266 (2019). https://doi.org/10.1007/s10846-018-0844-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0844-2

Keywords

Navigation