Abstract
Conventional Adaptive Fuzzy Sliding Mode Control (AFSMC) method is extended for nonlinear affine systems with state-dependent upper bound of uncertainties. More general affine model of the system with state-dependent uncertainties is proposed where such a model is more applicable in robotics. Position control of a Stewart Manipulator (SM) is then considered as a challenging case study to experimentally verify the effectiveness of the proposed Extended AFSMC (E-AFSMC) method. The proposed method is encompassed of a fuzzy system for estimation of a nonlinear system, a robust controller for compensation of uncertainties and some appropriate adaptation laws for optimization of performance. The second Lyapunov theorem and Barbalat lemma are used to prove the closed-loop asymptotic stability. Furthermore, numerical simulations depict the robustness of the proposed controller and in particular, under the very critical situation of actuator saturation and unexpected uncertainties. The effectiveness of the proposed control method is validated through experimental results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kunquan Li, R.W.: Robust control of a walking robot system and controller design. Procedia Eng. 174, 947 (2017). https://doi.org/10.1016/J.PROENG.2017.01.246. http://www.sciencedirect.com/science/article/pii/S1877705817302461
Sylvia Kohn-Rich, H.F.: Robust fuzzy logic tracking control of mechanical systems. J. Franklin Inst. 338(2-3), 353 (2001). https://doi.org/10.1016/S0016-0032(00)00093-4. http://www.sciencedirect.com/science/article/pii/S0016003200000934
Zhengchao Li, J.Y., Zhao, X.: On robust control of continuous-time systems with state-dependent uncertainties and its application to mechanical systems. ISA Trans. 60, 12 (2016). https://doi.org/10.1016/J.ISATRA.2015.10.023. http://www.sciencedirect.com/science/article/pii/S0019057815002578
Sun, W., Gao, H., Yao, B.: Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators. IEEE Trans. Control Syst. Technol. 21(6), 2417 (2013). https://doi.org/10.1109/TCST.2012.2237174. http://ieeexplore.ieee.org/document/6450065/
Gao, H., Zhao, Y., Sun, W.: Input-delayed control of uncertain seat suspension systems with human-body model. IEEE Trans. Control Syst. Technol. 18(3), 591 (2010). https://doi.org/10.1109/TCST.2009.2024929. http://ieeexplore.ieee.org/document/5208208/
Gao, H., Sun, W., Shi, P.: Robust sampled-data H∞ control for vehicle active suspension systems. IEEE Trans. Control Syst. Technol. 18(1), 238 (2010). https://doi.org/10.1109/TCST.2009.2015653. http://ieeexplore.ieee.org/document/5291703/
Zhu, Y.F.S.J., Zheng, Y.F.: Analysis of non-linear dynamics of a two-degree-of-freedom vibration system with nonlinear damping and non-linear spring. J. Sound Vib. 271(1-2), 15 (2004). https://doi.org/10.1016/S0022-460X(03)00249-9. http://www.sciencedirect.com/science/article/pii/S0022460X03002499
Zhao, X., Zhang, L., Shi, P., Karimi, H.R.: Robust control of continuous-time systems with state-dependent uncertainties and its application to electronic circuits. IEEE Trans. Ind. Electron. 61(8), 4161 (2014). https://doi.org/10.1109/TIE.2013.2286568. http://ieeexplore.ieee.org/document/6642110/
Its’haki-Allerhand, L., Shaked, U.: H∞ control of a class of nonlinear systems and its application to control of electronic circuit with nonlinear elements. In: 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel, pp. 457–460. IEEE (2008). https://doi.org/10.1109/EEEI.2008.4736570. http://ieeexplore.ieee.org/document/4736570/
Li, Z.: Robust control of PM spherical stepper motor based on neural networks. IEEE Trans. Ind. Electron. 56(8), 2945 (2009). https://doi.org/10.1109/TIE.2009.2023639. http://ieeexplore.ieee.org/document/5061562/
Xia, Y., Zhu, Z., Fu, M., Wang, S.: Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans. Ind. Electron. 58(2), 647 (2011). https://doi.org/10.1109/TIE.2010.2046611. http://ieeexplore.ieee.org/document/5439851/
Liu, H., Lu, G., Zhong, Y.: Robust LQR attitude control of a 3-dof laboratory helicopter for aggressive maneuvers. IEEE Trans. Ind. Electron. 60(10), 4627 (2013). https://doi.org/10.1109/TIE.2012.2216233. http://ieeexplore.ieee.org/document/6290370/
Zhang, Z., Park, J.H., Shao, H.: Adaptive synchronization of uncertain unified chaotic systems via novel feedback controls. Nonlinear Dyn. 81(1-2), 695 (2015). https://doi.org/10.1007/S11071-015-2020-6
Li, Z., Zhao, X.: New results on robust control for a class of uncertain systems and its applications to Chua’s oscillator. Nonlinear Dynamics 84(4), 1929 (2016). https://doi.org/10.1007/s11071-016-2617-4
Xia, Y., Fu, M., Yang, H., Liu, G.-P.: Robust sliding-mode control for uncertain time-delay systems based on delta operator. IEEE Trans. Ind. Electron. 56(9), 3646 (2009). https://doi.org/10.1109/TIE.2008.2007987
Hu, J., Wang, Z., Gao, H., Stergioulas, L.K.: Robust sliding mode control for discrete stochastic systems with mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities. IEEE Trans. Ind. Electron. 59(7), 3008 (2012). https://doi.org/10.1109/TIE.2011.2168791
Magni, R.S.L., De Nicolao, G., Magnani, L.: A stabilizing model-based predictive control algorithm for nonlinear systems. Automatica 37(9), 1351 (2001). https://doi.org/10.1016/S0005-1098(01)00083-8
Kaloust, J., Qu, Z.: Attenuation of nonlinearly state-dependent uncertainties: Robust control design and its application to robotic manipulators. In: American Control Conference, pp. 3504–3505 (1994). https://doi.org/10.1109/ACC.1994.735231
Pin, G., Raimondo, D., Magni, L., Parisini, T.: Robust model predictive control of nonlinear systems with bounded and state-dependent uncertainties. IEEE Trans. Autom. Control 54(7), 1681 (2009). https://doi.org/10.1109/TAC.2009.2020641. http://ieeexplore.ieee.org/document/5129691/
Zhu, X.: Robust H∞ filtering for discrete-time systems with nonlinear uncertainties. In: 2006 1ST IEEE Conference on Industrial Electronics and Applications, pp. 1–6. IEEE (2006). https://doi.org/10.1109/ICIEA.2006.257251. http://ieeexplore.ieee.org/document/4025852/
Liu, J., Wu, C., Wang, Z., Wu, L.: Reliable filter design for sensor networks using type-2 fuzzy framework. IEEE Trans. Ind. Inf. 13(4), 1742 (2017). https://doi.org/10.1109/TII.2017.2654323
Wu, C., Liu, J., Xiong, Y., Wu, L.: Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems. IEEE Trans Neural Netw Learn Syst PP(99), 1 (2018). https://doi.org/10.1109/TNNLS.2017.2712619
Alvarez, J., Rosas, D., Pena, J.: Analog implementation of a robust control strategy for mechanical systems. IEEE Trans. Ind. Electron. 56(9), 3377 (2009). https://doi.org/10.1109/TIE.2009.2020706. http://ieeexplore.ieee.org/document/4838891/
Magni, L., De Nicolao, G., Scattolini, R., Allgȯwer, F.: Robust model predictive control for nonlinear discrete-time systems. Int. J. Robust Nonlinear Control 13(3-4), 229 (2003). https://doi.org/10.1002/rnc.815
Magni, L., Scattolini, R.: Robustness and robust design of mpc for nonlinear discrete-time systems. In: Assessment and Future Directions of Nonlinear Model Predictive Control, pp. 239–254. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-72699-9_19
Chisci, G.Z.L., Rossiter, J.A.: Systems with persistent disturbances: predictive control with restricted constraints. Automatica 37(7), 1019 (2001). https://doi.org/10.1016/S0005-1098(01)00051-6. http://www.sciencedirect.com/science/article/pii/S0005109801000516
Ojaghi, P., Bigdeli, N., Rahmani, M.: An LMI approach to robust model predictive control of nonlinear systems with state dependent uncertainties. J. Process. Control. 47, 1 (2016). https://doi.org/10.1016/j.jprocont.2016.08.012. http://www.sciencedirect.com/science/article/pii/S0959152416301135
Wang, X., Yang, L., Sun, Y., Deng, K.: Adaptive model predictive control of nonlinear systems with state-dependent uncertainties. Int. J. Robust Nonlinear Control. https://doi.org/10.1002/rnc.3787 (2017)
Soltanpour, M.R., Khooban, M.H., Soltani, M.: Robust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertainties. Robotica 32(03), 433 (2014). https://doi.org/10.1017/S0263574713000702. http://www.journals.cambridge.org/abstract_S0263574713000702
Sadeghi, M.S., Vafamand, N., Khooban, M.H.: LMI-based stability analysis and robust controller design for a class of nonlinear chaotic power systems. J. Franklin Inst. 353(13), 2835 (2016). https://doi.org/10.1016/j.jfranklin.2016.04.021. http://linkinghub.elsevier.com/retrieve/pii/S0016003215301058
Veysi, M., Soltanpour, M.R., Khooban, M.H.: A novel self-adaptive modified bat fuzzy sliding mode control of robot manipulator in presence of uncertainties in task space. Robotica 33(10), 2045 (2015). https://doi.org/10.1017/S0263574714001258. http://www.journals.cambridge.org/abstract_S0263574714001258
Gholami, A., Markazi, A.H.D.: A new adaptive fuzzy sliding mode observer for a class of MIMO nonlinear systems. Nonlinear Dyn. 70(3), 2095 (2012). https://doi.org/10.1007/s11071-012-0602-0
Ho, H.F., Wong, Y.K., Rad, A.B.: Simulation modelling practice and theory adaptive fuzzy sliding mode control with chattering elimination for nonlinear siso systems. Simul. Model. Pract. Theory 17(7), 1199 (2009). https://doi.org/10.1016/j.simpat.2009.04.004
Poursamad, A., Davaie-Markazi, A.H.: Robust adaptive fuzzy control of unknown chaotic systems. Appl. Soft Comput. 9(3), 970 (2009). https://doi.org/10.1016/j.asoc.2008.11.014. http://www.sciencedirect.com/science/article/pii/S1568494608001774
Noroozi, N., Roopaei, M., Jahromi, M.Z.: Commun nonlinear sci numer simulat adaptive fuzzy sliding mode control scheme for uncertain systems. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3978 (2009). https://doi.org/10.1016/j.cnsns.2009.02.015
Poursamad, A., Markazi, A.H.D.: Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems. Chaos, Solitons & Fractals 42(5), 3100 (2009). https://doi.org/10.1016/j.chaos.2009.04.044
Nekoukar, V., Erfanian, A.: Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems. Fuzzy Set. Syst. 179(1), 34 (2011)
Soltanpour, M.R., Khooban, M.H., Khalghani, M.R.: An optimal and intelligent control strategy for a class of nonlinear systems: adaptive fuzzy sliding mode. J. Vib. Control. 22(1), 159 (2016). https://doi.org/10.1177/1077546314526920
Niknam, T., Khooban, M.H., Kavousifard, A., Soltanpour, M.R.: An optimal type II fuzzy sliding mode control design for a class of nonlinear systems. Nonlinear Dyn. 75(1-2), 73 (2014). https://doi.org/10.1007/s11071-013-1050-1
Khooban, M.H., Niknam, T., Dehghani, M., Blaabjerg, F.: Free chattering hybrid sliding mode control for a class of non-linear systems: electric vehicles as a case study. IET Sci. Meas. Technol. 10(7), 776 (2016). https://doi.org/10.1049/iet-smt.2016.0091
Craig, J.: Adaptive Control of Mechanical Manipulators, 1st edn. Addison-Wesley, New York (1988)
Wang, Z.: Lyapunov-Based Control Design for Uncertain MIMO Systems. Ph.D. Thesis. University of Central Florida, Orlando (2011)
Sastry, S.S., Bodson, M.: Adaptive Control: Stability, Convergence, and Robustness, 1St Edn. Courier Corporation, N. Chelmsford (1989)
Lebret, G., Liu, K., Lewis, F.L.: Dynamic analysis and control of a Stewart platform manipulator. J. Field Robot 10(5), 629 (1993). https://doi.org/10.1002/ROB.4620100506
Iqbal, S., Bhatti, A.I., Ahmed, Q.: Dynamic analysis and robust control design for stewart platform with moving payloads. In: Proceedings of the 17th World Congress, pp. 5324–5329 (2008). https://doi.org/10.3182/20080706-5-KR-1001.3036
Chen, S.H., Fu, L.C.: Output feedback sliding mode control for a stewart platform with a nonlinear observer based forward kinematics solution. IEEE Trans. Control Syst. Technol. 21(1), 176 (2013). https://doi.org/10.1109/TCST.2011.2171964
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
In order to become clearer, list of main symbols of SM and controller are presented in Table 4.
Rights and permissions
About this article
Cite this article
Navvabi, H., Markazi, A.H.D. New AFSMC Method for Nonlinear System with State-dependent Uncertainty: Application to Hexapod Robot Position Control. J Intell Robot Syst 95, 61–75 (2019). https://doi.org/10.1007/s10846-018-0850-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-018-0850-4