Skip to main content
Log in

Bio-Inspired Robotics: A Spatial Cognition Model integrating Place Cells, Grid Cells and Head Direction Cells

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The paper presents a bio-inspired robotics model for spatial cognition derived from neurophysiological and experimental studies in rats. The model integrates Hippocampus place cells providing long-term spatial localization with Enthorinal Cortex grid cells providing short-term spatial localization in the form of “neural odometry”. Head direction cells provide for orientation in the rat brain. The spatial cognition model is evaluated in simulation and experimentation showing a reduced number of localization errors during robot navigation when contrasted to previous versions of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agster, K.L., Burwell, R.D.: Hippocampal and subicular efferents and afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Behav. Brain Res. 254, 50–64 (2013). https://doi.org/10.1016/j.bbr.2013.07.005. ISSN 0166–4328

    Article  Google Scholar 

  2. Alvernhe, A., Sargolini, F., Poucet, B.: Rats build and update topological representations through exploration. Anim. Cogn. 15, 359–368 (2011)

    Article  Google Scholar 

  3. Antonelo, E., Schrauwen, B.: Unsupervised learning in reservoir computing: modeling hippocampal place cells for small mobile robots. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) Artificial Neural Networks - ICANN 2009, volume 5768 of Lecture Notes in Computer Science, chapter 77. ISBN 978-3-642-04273-7, pp. 747–756. Springer, Berlin (2009)

  4. Arleo, A., Smeraldi, F., Gerstner, W.: Cognitive navigation based on nonuniform Gabor space sampling, unsupervised growing networks, and reinforcement learning. IEEE Trans. Neural Netw. 15(3), 639–652 (2004)

    Article  Google Scholar 

  5. Barrera, A., Caceres, A., Weitzenfeld, A., Ramirez-Amaya, V.: Comparative experimental studies on spatial memory and learning in rats and robots. J. Intell. Robot. Syst. 63(3-4), 361–397 (2011)

    Article  Google Scholar 

  6. Barrera, A., Tejera, G., Llofriu, M., Weitzenfeld, A.: Learning spatial localization: From rat studies to computational models of the hippocampus. Spat. Cogn. Comput. 15(1), 27–59 (2015)

    Article  Google Scholar 

  7. Barrera, A., Weitzenfeld, A.: Biologically-inspired robot spatial cognition based on rat neurophysiological studies. J. Auto. Robot. Springer 25(1-2), 147–169 (2008)

    Article  Google Scholar 

  8. Barto, A.G.: Adaptive critics and the basal ganglia. In: Houk, C., Davis, J.L., Beiser, D. (Eds.), Models ofinformation processing in the basal ganglia, MIT Press Cambridge MA pp. 215-232 (1995)

  9. Borenstein, J., Feng, L.: Measurement and correction of systematic odometry errors in mobile robots. IEEE Trans. Robot. Autom. 12, 869–880 (1996)

    Article  Google Scholar 

  10. Brown, M.A., Sharp, P.E.: Simulation of spatial learning in the morris water maze by a neural network model of the hippocampal formation and nucleus accumbens. Hippocampus 5, 171–188 (1995)

    Article  Google Scholar 

  11. Burak, Y., Fiete, I.R.: Accurate path integration in continuous attractor network models of grid cells, PLoS Comput. Biol (2009)

  12. Burgess, N., Recce, M., O’Keefe, J.: A model of hippocampal function. Neural Netw. 7(6-7), 1065–1081 (1994)

    Article  MATH  Google Scholar 

  13. Burgess, N., Barry, C., O’Keefe, J.: An Oscillatory Interference Model of Grid Cell Firing. Hippocampus 17, 801–812 (2007)

    Article  Google Scholar 

  14. Bush, D., Burgess, N.: A hybrid oscillatory interference / continuous attractor network model of grid cell firing. J. Neurosci. 34, 5065–5079 (2014)

    Article  Google Scholar 

  15. Caluwaerts, K., Staffa, M., N’Guyen, S., Grand, C., Dollé, L, Favre-Felix, A., Girard, B., Khamassi, M.: A biologically inspired meta-control navigation system for the Psikharpax rat robot. IOP Bioinspiration & Biomimetics 7(2), 025009 (2012). https://doi.org/10.1088/1748-3182/7/2/025009

    Article  Google Scholar 

  16. Cheung, A., Ball, D., Milford, M., Wyeth, G., Wiles, J.: Maintaining a cognitive map in darkness: The need to fuse boundary knowledge with path integration. PLoS Comput. Biol. 8(8) (2012). https://doi.org/10.1371/journal.pcbi.1002651

  17. Cho, J., Sharp, P.: Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav. Neurosci. 115(1), 3–25 (2001)

    Article  Google Scholar 

  18. Dollé, L., Sheynikhovich, D., Girard, B., Chavarriaga, R., Guillot, A.: Path planning versus cue responding: a bioinspired model of switching between navigation strategies. Biol. Cybern. 103(4), 299–317 (2010)

    Article  MATH  Google Scholar 

  19. Etienne, A.S., Jeffery, K.J.: Path integration in mammals. Hippocampus 14(2), 180–192 (2004)

    Article  Google Scholar 

  20. Filliat, D., Meyer, J.-A.: Global localization and topological map learning for robot navigation, From Animals to Animats 7, Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior, edited by Hallam et al The MIT Press pp. 131-140 (2002)

  21. Fuhs, M.C., Touretzky, D.S.: A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 26, 4266–4276 (2006)

    Article  Google Scholar 

  22. Fyhn, M., Molden, S., Witter, M., Moser, E., Moser, M.B.: Spatial representation in the entorhinal cortex, Science, Vol 305 pp. 1258-1264 Sept (2004)

  23. Gaussier, P., Revel, A., Banquet, J.P., Babeau, V.: From view cells and place cells to cognitive map learning: processing stages of the hippocampal system. Biol. Cybern. 86, 15–28 (2002)

    Article  MATH  Google Scholar 

  24. Gibson, J.J.: The visual perception of objective motion and subjective movement. Psychol. Rev. 61, 304–314 (1954)

    Article  Google Scholar 

  25. Gibson, J.J.: The theory of affordances. In: Shaw, R., Bransford, J. (eds.) Perceiving, acting, and knowing: Toward an ecological psychology, pp. 67–82. Erlbaum, Hillsdale (1977)

  26. Granon, S., Poucet, B.: Involvement of the rat prefrontal cortex in cognitive functions: A central role for the prelimbic area. Psychobiology 28(2), 229–237 (2000)

    Google Scholar 

  27. Guazzelli, A., Corbacho, F.J., Bota, M., Arbib, M.A.: Affordances, motivation, and the world graph theory. Adapt. Behav. 6(3-4), 435–471 (1998)

    Article  Google Scholar 

  28. Guzowski, J. F., Knierim, J. J., Moser, E. I.: Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron 44(4), 581–584 (2004)

    Article  Google Scholar 

  29. Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.: Microstructure of a spatial map in the entorhinal cortex, Nature, Vol 436 pp. 801-806 Aug (2005)

  30. Hasselmo, M., Giocomo, M., Zilli, E.: Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampu,s 17, 1252–1271 (2007)

    Article  Google Scholar 

  31. Hebb, D.O.: The organization of behavior: a neuropsychological theory. Wiley-Interscience, New York (1949)

    Google Scholar 

  32. Houk, J. C., Adams, J. L., Barto, A. G.: In Models of information processing in the basal ganglia, edited by J. C. Houk, J. L. Davis and D. G. Beiser, MIT Press, pp. 249–270 (1995)

  33. Jeffery, K.J., O’Keefe, J.M.: Learned interaction of visual and idiothetic cues in the control of place field orientation. Exp. Brain Res. 127, 151–161 (1999)

    Article  Google Scholar 

  34. Kelley, A.: Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci. Biobehav. Rev. 27(8), 765–776 (2004)

    Article  Google Scholar 

  35. Krupic, J., Burgess, N., O’Keefe, J.: Neural representations of location composed of spatially periodic bands. Science 337, 853–857 (2012)

    Article  Google Scholar 

  36. Leutgeb, S., Leutgeb, J.K., Treves, A., Moser, M.B., Moser, E.: Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305(5688), 1295–1298 (2004)

    Article  Google Scholar 

  37. Leutgeb, S., Leutgeb, J.K.: Pattern separation, pattern completion, and new neuronal codes within a continuous CA3 map. Learn. Mem. 14(11), 745–57 (2007)

    Article  Google Scholar 

  38. McNaughton, B., Battaglia, F., Jensen, O., Moser, E., Moser, M.B.: Path integration and the neural basis of the ‘cognitive map’, Nature Reviews Neuroscience, Vol 7 pp. 663-678 Aug (2006 )

  39. McNaughton, B., Knierim, J.J., Wilson, M.A.: Vector encoding and the vestibular foundations of spatial cognition. In: Gazzaniga, M. (Ed), The cognitive neurosciences. MIT Press Boston, pp. 585–595 (1994)

  40. McNaughton, B., Mizumori, S., Barnes, C., Leonard, B., Marquis, M., Green, E.: Cortical representation of motion during unrestrained spatial navigation in the rat. Cereb. Cortex 4, 27–39 (1994)

    Article  Google Scholar 

  41. Mhatre, H., Gorchetchnikov, A., Grossberg, S.: Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex. Hippocampus 22(2), 320–334 (2012)

    Article  Google Scholar 

  42. Milford, M., Wyeth, G.: Spatial mapping and map exploitation: a bio-inspired engineering perspective. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) Spatial Information Theory, pp. 203–221. Springer-Verlag, Heidelberg (2007)

  43. Milford, M., Wyeth, G.: Persistent navigation and mapping using a biologically inspired SLAM system. Int. J. Robot. Res. 29(9), 1131–1153 (2010)

    Article  Google Scholar 

  44. Mittelstaedt, M., Mittelstaedt, H.: Homing by path integration in a mammal. In: Papi, F., Wallraff, H.G. (eds.) Avian Navigation, pp. 290–297. Springer Verlag, Berlin (1982)

  45. Morris, R.G.M.: Spatial localization does not require the presence of local cues, Learning and Motivation, vol. 12, pp. 239 –260 (1981)

  46. Morris, R.G.M.: Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60 (1984). Elsevier

    Article  Google Scholar 

  47. Moser, E., Kropff, E., Moser, M.B.: Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008)

    Article  Google Scholar 

  48. Navratilova, Z., Giocomo, L.M., Fellous, J.M., Hasselmo, M., McNaughton, B.: Phase precession and variable spatial scaling in a periodic attractor map model of medial Entorhinal grid cells with realistic after-spike dynamics, Hippocampus (2011)

  49. O’Keefe, J., Conway, D. H.: Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 31, 573–590 (1978)

    Google Scholar 

  50. O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Oxford University Press, Oxford (1978)

    Google Scholar 

  51. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map: preliminary evidence from unit activity in the freely moving rat. Brain Res. 34(1), 171–175 (1971)

    Article  Google Scholar 

  52. O’Keefe, J.: Spatial memory within and without the hippocampal system, in Neurobiology of the Hippocampus. In: Seifert, W. (ed.) , pp. 375–403. Academic Press, New York (1983)

  53. Parron, C., Save, E.: Evidence for entorhinal and parietal cortices involvement in path integration in the rat. Exp. Brain Res. 159(3), 349–359 (2004)

    Article  Google Scholar 

  54. Poucet, B.: Spatial cognitive maps in animals: new hypotheses on their structure and neural mechanisms. Psychol. Rev. 100(2), 163–182 (1993)

    Article  Google Scholar 

  55. Quirk, G. J., Muller, R. U., Kubie, J. L.: The firing of hippocampal place cells in the dark depends on the rat’s recent experience. J. Neurosci. 10(6), 2008–2017 (1990)

    Article  Google Scholar 

  56. Ranck, J. B. Jr: Head-direction cells in the deep layers of dorsal presubiculum in freely moving rats. Soc. Neurosci. Abstr. 10, 599 (1984)

    Google Scholar 

  57. Redish, A., Touretzky, D.: Cognitive maps beyond the hippocampus. Hippocampus 7(1), 15–35 (1997)

    Article  Google Scholar 

  58. Rolls, E. T.: Head direction and spatial view cells in primates, and brain mechanisms for path integration. In: Head direction cells and the neural mechanisms underlying directional orientation, pp. 299–318. MIT Press, Cambridge (2005)

  59. Samu, D., Erős, P., Ujfalussy, B., Kiss, T.: Robust path integration in the entorhinal grid cell system with hippocampal feed-back. Biol. Cybern. 101(1), 19–34 (2009)

    Article  MathSciNet  Google Scholar 

  60. Schultz, W., Tremblay, L., Hollerman, J.: Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology 37(4-5), 421–429 (1998)

    Article  Google Scholar 

  61. Solstad, T., Moser, E.I., Einevoll, G.T.: From grid cells to place cells: a mathematical model. Hippocampus 16, 1026–1031 (2006)

    Article  Google Scholar 

  62. Taube, J.S., Muller, R.I., Ranck, J.B. Jr: Head direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 10, 436–447 (1990)

    Article  Google Scholar 

  63. Taube, J.S.: Head direction cells and the neurophysiological basis for a sense of direction. Prog. Neurobiol. 55, 225–56 (1998)

    Article  Google Scholar 

  64. Tejera, G., Barrera, A., Llofriu, M., Weitzenfeld, A.: Solving uncertainty during robot navigation by integrating grid cell and place cell firing based on rat spatial cognition studies, International Conference on Advanced Robotics, Proc. ICAR 2013, Montevideo, Uruguay (2013)

  65. Tejera, G., Llofriu, M., Barrera, A., Weitzenfeld, A.: A Spatial Cognition Model Integrating Grid Cells and Place Cells. In: International Joint Conference on Neural Networks, Proc. IJCNN 2015, July 12-17, Killarney, Ireland (2015)

  66. Tolman, E.: Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948)

    Article  Google Scholar 

  67. Towse, B., Barry, C., Bush, D., Burgess, N.: Optimal configurations of spatial scale for grid cell firing under noise and uncertainty, Philosophical Transaction of the Royal Society (2013)

  68. Weitzenfeld, A., Arbib, M., Alexander A. MIT Press, Cambridge (2002)

Download references

Acknowledgments

This work was funded in part by NSF IIS Robust Intelligence research collaboration grant #1117303 at USF and U. Arizona entitled “Investigations of the Role of Dorsal versus Ventral Place and Grid Cells during Multi-Scale Spatial Navigation in Rats and Robots,” and also supported in part by the “Agencia Nacional de Investigacion e Innovación (ANII)” and by the “Asociación Mexicana de Cultura, A. C.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Weitzenfeld.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tejera, G., Llofriu, M., Barrera, A. et al. Bio-Inspired Robotics: A Spatial Cognition Model integrating Place Cells, Grid Cells and Head Direction Cells. J Intell Robot Syst 91, 85–99 (2018). https://doi.org/10.1007/s10846-018-0852-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0852-2

Keywords

Navigation