Skip to main content
Log in

Visual Servoing on the Generalized Voronoi Diagram Using an Omnidirectional Camera

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The Generalized Voronoi Diagram (GVD) is a powerful environment representation, since, among other reasons, it defines a set of paths at maximal distance from the obstacles. Many works implicitly use this property to define safe navigation strategies for a mobile robot, but, in practice, only a few explicitly extract in real time the GVD from its perception to induce motion. This article addresses this challenge for a mobile robot solely equipped with an omnidirectional camera, and proposes an autonomous navigation strategy in unknown indoor and/or outdoor environments. The problem is formulated as a visual servoing task, and uses an anisotropic skeletonization algorithm to identify the projection in the image of the local GVD, while suppressing unsafe navigable paths thanks to a context-defined pruning parameter. Unlike rangefinder based system, the use of an omnidirectional camera allows to efficiently deal with outdoor scenes, since the navigable space is extracted using photometric cues. The servoing is then performed using a local linear approximation of the GVD, defined by a conic extracted in real time in the omnidirectional image. To assert the relevancy and efficiency of the proposed approach, extended experimental results are presented, both on indoor and outdoor scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Z., Birchfield, S.T.: Qualitative vision-based path following. IEEE Trans. Robot. 25(3), 749–754 (2009). https://doi.org/10.1109/TRO.2009.2017140

    Article  Google Scholar 

  2. Royer, E., Lhuillier, M., Dhome, M., Lavest, J.: Monocular vision for mobile robot localization and autonomous navigation. Int. J. Comput. Vis. 74(3), 237–260 (2007). https://doi.org/10.1007/s11263-006-0023-y

    Article  MATH  Google Scholar 

  3. Caron, G., Marchand, Ė., Mouaddib, E.M.: Photometric visual servoing for omnidirectional cameras. Auton. Robots 35(2-3), 177–193 (2013)

    Article  Google Scholar 

  4. Pasteau, F., Narayanan, V.K., Babel, M., Chaumette, F.: A visual servoing approach for autonomous corridor following and doorway passing in a wheelchair. Robot. Auton. Syst. 75, 28–40 (2016). https://doi.org/10.1016/j.robot.2014.10.017

    Article  Google Scholar 

  5. Ben-Said, H., Stéphant, J., Labbani-Igbida, O.: Sensor-based control using finite time observer of visual signatures: application to corridor following. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 418–423 (2016)

  6. Blas, M.R., Agrawal, M., Sundaresan, A., Konolige, K.: Fast color/texture segmentation for outdoor robots. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, September 22-26, 2008, Acropolis Convention Center, Nice, France, pp. 4078–4085. https://doi.org/10.1109/IROS.2008.4651086 (2008)

  7. Rasmussen, C., Lu, Y., Kocamaz, M.K.: Appearance contrast for fast, robust trail-following. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 11-15, 2009, St. Louis, MO, USA, 2009, pp. 3505–3512. https://doi.org/10.1109/IROS.2009.5354059

  8. Hadj-Abdelkader, H., Mezouar, Y., Andreff, N., Martinet, P.: Omnidirectional visual servoing from polar lines. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, May 15-19, 2006, Orlando, Florida, USA, pp. 2385–2390 (2006)

  9. Hadj-Abdelkader, H., Mezouar, Y., Martinet, P., Chaumette, F.: Catadioptric visual servoing from 3-d straight lines. IEEE Trans. Robot. 24(3), 652–665 (2008)

    Article  Google Scholar 

  10. Caruso, D., Engel, J., Cremers, D.: Large-scale direct slam for omnidirectional cameras. In: International Conference on Intelligent Robots and Systems (IROS) (2015)

  11. Mur-Artal, R., Tardȯs, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  12. Choset, H., Burdick, J.: Sensor based planning, part i: The generalized voronoi graph. In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation (ICRA ’95), vol. 2, pp. 1649–1655 (1995)

  13. Wilmarth, S.A., Amato, N.M., Stiller, P.F.: MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space. In: 1999 IEEE International Conference on Robotics and Automation, Marriott Hotel, Renaissance Center, Detroit, Michigan, May 10-15, 1999, Proceedings, pp. 1024–1031 (1999)

  14. Mahkovic, R., Slivnik, T.: Constructing the generalized local voronoi diagram from laser range scanner data. IEEE Trans. Syst. Man Cybern. Part A 30(6), 710–719 (2000)

    Article  Google Scholar 

  15. Victorino, A.C., Rives, P., Borrelly, J.-J.: Safe navigation for indoor mobile robots. part ii: Exploration, self localization and map building. Int. J. Robot. Res. 22(12), 1019–1041 (2004)

    Article  Google Scholar 

  16. Garrido, S., Moreno, L., Blanco, D., Jurewicz, P.: Path planning for mobile robot navigation using voronoi diagram and fast marching. Int. J. Robot. Autom. 2(1), 42–64 (2011)

    Google Scholar 

  17. Marie, R., Labbani-Igbida, O., Mouaddib, E.M.: Scale space and free space topology analysis for omnidirectional images, IEEE Internationale Conference on Robotics and Automation (ICRA), Hong-Kong, China (2014)

  18. Barreto, J.P., Arau̇jo, H.: Issues on the geometry of central catadioptric image formation. In: 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), with CD-ROM, 8-14 December, vol. 2001, Kauai, HI, USA, pp. 422–427 (2001)

  19. Geyer, C., Daniilidis, K.: Catadioptric projective geometry. IJCV 45(3), 223–243 (2001)

    Article  MATH  Google Scholar 

  20. Merveilleux, P., Mouaddib, E.M.: Real-time free space detection and navigation using omnidirectional vision and parametric and geometric active contours. In: IEEE international conference on robotics and automation, ICRA 2011, Shanghai, China, 9-13 May 2011, pp. 6312–6317 Labbani-Igbida, O. (ed.) (2011)

  21. Blum, H.: A transformation for extracting new descriptors of shape. In: models for the perception of speech and visual form, MIT Press, pp. 362–380 (1967)

  22. Ogniewicz, R., Ilg, M.: Voronoi skeletons: theory and applications. In: 1992 IEEE computer society conference on computer vision and pattern recognition, 1992. Proceedings CVPR ’92., pp. 63–69 (1992)

  23. Hesselink, W., Roerdink, J.: Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2204–2217 (2008)

    Article  Google Scholar 

  24. Marie, R., Labbani-Igbida, O., Mouaddib, E.M.: The delta medial axis: a fast and robust algorithm for filtered skeleton extraction. Pattern Recogn. 56, 26–39 (2016)

    Article  Google Scholar 

  25. Hutchinson, S., Hager, G., Corke, P.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996)

    Article  Google Scholar 

  26. Chaumette, F., Hutchinson, S.: Visual servo control part i: Basic approaches. IEEE Robot. Autom. Mag. 13, 82–90 (2006)

    Article  Google Scholar 

  27. Chaumette, F., Hutchinson, S.: Visual servo control part ii: Advanced approaches. IEEE Robot. Autom. Mag. Inst. Electr. Electron. Eng. 14, 109–118 (2007)

    Google Scholar 

  28. Barreto, J.P., Arau̇jo, H.: Geometric properties of central catadioptric line images. In: Computer Vision - ECCV 2002, 7th European Conference on Computer Vision, Copenhagen, Denmark, May 28-31, vol. 2002, Proceedings, Part IV, pp. 237–251 (2002)

  29. Bermudez-Cameo, J., Puig, L., Guerrero, J.J.: Hypercatadioptric line images for 3d orientation and image rectification. Robot. Auton. Syst. 60(6), 755–768 (2012). https://doi.org/10.1016/j.robot.2012.02.008

    Article  Google Scholar 

  30. Andreff, N., Espiau, B., Horaud, R.: Visual servoing from lines, I. J. Robot. Res. 21(8), 679–700 (2002). https://doi.org/10.1177/027836402761412430

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially founded by the Région Limousin, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Marie.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Categories (7),(4),(3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marie, R., Said, H.B., Stéphant, J. et al. Visual Servoing on the Generalized Voronoi Diagram Using an Omnidirectional Camera. J Intell Robot Syst 94, 793–804 (2019). https://doi.org/10.1007/s10846-018-0855-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0855-z

Keywords

Mathematics Subject Classification (2010)

Navigation