Abstract
This paper presents DS-PTAM, a distributed architecture for the S-PTAM stereo SLAM system. This architecture is developed on the ROS framework, separating the localization and mapping tasks into two independent ROS nodes. The DS-PTAM system is ideal for mobile robots with low computing power because it allows to run the localization module on-board and the mapping module —which has a higher computational cost— on a remote base station, relieving the load on the on-board processor. The proposed architecture was implemented based on the original S-PTAM monolithic code and then validated through different experiments on public datasets. The results obtained show the feasibility of the proposed distributed architecture, its correct implementation and the benefits of distributing the computational load on several computers.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): part II. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006). https://doi.org/10.1109/MRA.2006.1678144
Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik, M.W., Siegwart, R.: The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res. 35(10), 1157–1163 (2016). https://doi.org/10.1177/0278364915620033
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.J.: Past, present, and future of simultaneous localization and mapping: Toward the Robust-Perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016). https://doi.org/10.1109/TRO.2016.2624754
De Croce, M., Pire, T., Bergero, F.: DiseÑo distribuido de un sistema de mapeo y localización basado en visión para un robot móvil. In: Anales De Las IX Jornadas Argentinas De Robótica, pp. 116–121 (2017)
Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006). https://doi.org/10.1109/MRA.2006.1638022
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Proceedings of the European Conference on Computer Vision (ECCV), pp. 834–849. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54
Engel, J., Stückler, J., Cremers, D.: Large-scale direct slam with stereo cameras. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 1935–1942. IEEE. https://doi.org/10.1109/IROS.2015.7353631 (2015)
Forster, C., Lynen, S., Kneip, L., Scaramuzza, D.: Collaborative monocular slam with multiple micro aerial vehicles. In: IROS, pp. 3962–3970. IEEE. http://dblp.uni-trier.de/db/conf/iros/iros2013.html#ForsterLKS13 (2013)
Forster, C., Zhang, Z., Gassner, M., Werlberger, M., Scaramuzza, D.: SVO: semidirect visual odometry for monocular and multicamera systems. IEEE Trans. Robot. 33(2), 249–265 (2017). https://doi.org/10.1109/TRO.2016.2623335. http://dblp.uni-trier.de/db/journals/trob/trob33.html#ForsterZGWS17
Gamage, R., Tuceryan, M.: An experimental distributed framework for distributed Simultaneous Localization and Mapping. In: Proceedings of the 2016 IEEE International Conference on Electro Information Technology (EIT), pp. 0665–0667. IEEE. https://doi.org/10.1109/EIT.2016.7535318 (2016)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. The international journal of robotics research. IJRR 32(11), 1231–1237 (2013). https://doi.org/10.1177/0278364913491297
Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Mathematics in Science and Engineering. Academic Press, New York (1970). http://opac.inria.fr/record=b1078357. UKM
Kelly, N.: A Guide to Ultrasonic Sensor set up and Testing Instructions, Limitations, and Sample Applications. Application Note. Michigan State University. Available online: http://www.egr.msu.edu/classes/ece480/capstone/fall09/group05/docs/ece480_dt5_application_note_nkelly.pdf (2009)
Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 1–10. IEEE Computer Society, Washington (2007). https://doi.org/10.1109/ISMAR.2007.4538852
Mahdoui, N., Natalizio, E., Frémont, V.: Multi-UAVs network communication study for distributed visual simultaneous localization and mapping. In: Proceedings of the 2016 International Conference on Computing, Networking and Communications (ICNC), pp. 1–5. IEEE Computer Society. https://doi.org/10.1109/ICCNC.2016.7440564 (2016)
Metropolis, N., Ulam, S.: The monte carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949). https://doi.org/10.1080/01621459.1949.10483310. http://www.tandfonline.com/doi/abs/10.1080/01621459.1949.10483310. PMID: 18139350
Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. CoRR arXiv:1610.06475 (2016)
Pire, T., Fischer, T., Castro, G., De Cristóforis, P., Civera, J., Jacobo Berlles, J.: S-PTAM: Stereo parallel tracking and mapping. Robot. Auton. Syst. (RAS) 93, 27–42 (2017). https://doi.org/10.1016/j.robot.2017.03.019
Pire, T., Fischer, T., Civera, J., De Cristóforis, P., Berlles, J.J.: Stereo parallel tracking and mapping for robot localization. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1373–1378 (2015)
Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)
Riazuelo, L., Civera, J., Montiel, J.M.M.: C2TAM: A Cloud framework for cooperative tracking and mapping. Robot. Auton. Syst. 62(4), 401–413 (2014). https://doi.org/10.1016/j.robot.2013.11.007. http://www.sciencedirect.com/science/article/pii/S0921889013002248
Strasdat, H., Davison, A.J., Montiel, J.M.M., Konolige, K.: Double window optimisation for constant time visual SLAM. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2352–2359. https://doi.org/10.1109/ICCV.2011.6126517 (2011)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle Adjustment — a Modern Synthesis, chap. 21, pp. 298–372. Springer, Berlin (2000). https://doi.org/10.1007/3-540-44480-7_21
Wendel, A., Maurer, M., Graber, G., Pock, T., Bischof, H.: Dense reconstruction on-the-fly. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), CVPR ’12. https://doi.org/10.1109/CVPR.2012.6247833, pp. 1450–1457. IEEE Computer Society, Washington (2012)
Williams, R., Konev, B., Coenen, F.: Multi-Agent Environment Exploration with AR.Drones, pp. 60–71. Lecture Notes in Computer Science. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-10401-0_6
Williams, R., Konev, B., Coenen, F.: Scalable distributed collaborative tracking and mapping with Micro Aerial Vehicles. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3092–3097. https://doi.org/10.1109/IROS.2015.7353804 (2015)
Zanuttigh, P., Marin, G., Dal Mutto, C., Dominio, F., Minto, L., Cortelazzo, G.M.: Operating Principles of Structured Light Depth Cameras, pp. 43–79. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-30973-6_2
Acknowledgements
This work is part of the Development of a weed remotion mobile robot project at CIFASIS (CONICET-UNR).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
De Croce, M., Pire, T. & Bergero, F. DS-PTAM: Distributed Stereo Parallel Tracking and Mapping SLAM System. J Intell Robot Syst 95, 365–377 (2019). https://doi.org/10.1007/s10846-018-0913-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-018-0913-6