Skip to main content
Log in

A New Contact Angle Detection Method for Dynamics Estimation of a UGV Subject to Slipping in Rough-Terrain

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a new single-output resistive sensor is proposed to enhance the dynamics estimation, slip elimination, stability extraction and surface scanning of a ground UGV (wheeled-robot) in 2D and 3D spaces. The new sensor is based on the total resistance of a circuit which contains a continuous resistive belt with high accuracy. The Lagrange method is implemented to derive the stick-slip dynamics in both 2D and 3D spaces. Furthermore, the kinematics is solved using the Newton-Raphson approach. The slipping characteristics of the robot with and without the new sensor are firstly shown in 2D space. To demonstrate the abilities of the sensor in the real applications, the dynamic simulation is further extended to 3D space. A real time torque optimization aided by the new sensor is applied to the dynamics of the robot to eliminate slip during locomotion. Moreover, a stability measure is introduced and the real time stability margins are extracted during missions. The sensor empowers the robot to scan the surface and consequently, extract the main properties of the surface. The simulation results obtained for different case studies prove the ability of the new sensor in performing the above mentioned tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogue, R.: Robots to aid the disabled and the elderly. Ind. Robot: Int. J. 40, 519–524 (2013)

    Article  Google Scholar 

  2. Bogue, R.: Robots for space exploration. Ind. Robot: Int. J. 39, 323–328 (2012)

    Article  Google Scholar 

  3. Weisbin, C. R., Lavery, D., Rodriguez, G.: Robots In space into the 21st century. Ind. Robot: Int. J. 24, 169–181 (1997)

    Article  Google Scholar 

  4. Mardani, A., Ebrahimi, S.: A Novel multimode mobile robot with adaptable wheel geometry for maneuverability improvement. Int. J. Robot. 4, 1–15 (2016)

    Google Scholar 

  5. Ebrahimi, S., Mardani, A.: Dynamic Modeling And Construction of a New Two-Wheeled Mobile Manipulator: Self-balancing and Climbing. Int. J. Robot. Theory Appl. 4, 22–34 (2015)

    Google Scholar 

  6. Dogramadzi, S., Giannaccini, M. E., Harper, C., Sobhani, M., Woodman, R., Choung, J.: Environmental Hazard analysis-a variant of preliminary hazard analysis for autonomous mobile robots. J. Intell. Robot. Syst. 76(1), 73–117 (2014)

    Article  Google Scholar 

  7. Wu, C. J., Tsai, C. C.: Localization Of an autonomous mobile robot based on ultrasonic sensory information. J. Intell. Robot. Syst. 30(3), 267–277 (2001)

    Article  MATH  Google Scholar 

  8. Xu, H., Liu, X., Fu, H., Putra, B. B., He, L.: Visual Contact angle estimation and traction control for mobile robot in rough-terrain. J. Intell. Robot. Syst. 74(3-4), 985 (2014)

    Article  Google Scholar 

  9. Cervantes-Sánchez, J.J., Rico-martínez, J. M., Pé, rez-Muñoz, V. H., Orozco-Muñiz, J. D.: A closed-form solution to the forward displacement analysis of a Schönflies parallel manipulator. J. Braz. Soc. Mech. Sci. Eng. 39, 553–563 (2017)

  10. Nagatani, K., Ikeda, A., Sato, K., Yoshida, K.: Accurate Estimation of drawbar pull of wheeled mobile robots traversing sandy terrain using built-in force sensor array wheel. In: IEEE/RSJ International Conference Intelligent Robots and Systems, 2009. IROS 2009, pp. 2373–2378 (2009)

  11. Mardani, A., Ebrahimi, S.: Simultaneous Surface scanning and stability analysis of wheeled mobile robots using a new spatial sensitive shield sensor. Robot. Auton. Syst. 98, 1–14 (2017)

    Article  Google Scholar 

  12. Zadarnowska, K., Ratajczak, A.: Task-Priority motion planning of wheeled mobile robots subject to slipping. Robot Motion and Control 422, 75–85 (2012)

    MathSciNet  Google Scholar 

  13. Zielinska, T., Chmielniak, A.: Synthesis Of control law considering wheel–ground interaction and contact stability of autonomous mobile robot. Robotica 29, 981–990 (2011)

    Article  Google Scholar 

  14. Conceicao, A. G., Correia, M. D., Martinez, L.: Modeling And friction estimation for wheeled omnidirectional mobile robots. Robotica 34, 2140–2150 (2016)

    Article  Google Scholar 

  15. Siravuru, A., Shah, S. V., Krishna, K. M.: An optimal wheel-torque control on a compliant modular robot for wheel-slip minimization. Robotica 35, 463–82 (2017)

    Article  Google Scholar 

  16. Lamon, P., Siegwart, R.: Wheel Torque Control in Rough Terrain - Modeling and Simulation. In: IEEE International Conference on Robotics and Automation, ICRA, pp. 18–22. Barcelona (2005)

  17. Gracia, L., Tornero, J.: Kinematic modeling of wheeled mobile robots with slip. Adv Robot 21, 1253–1279 (2007)

    Article  Google Scholar 

  18. Li, Y. P., Ang, M. H., Lin, W.: Slip Modelling, Detection and Control for Redundantly Actuated Wheeled Mobile Robots. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 967-972. Xi’an (2008)

  19. Tharakeshwar, A., Ghosal, A.: A Three-wheeled mobile robot for traversing uneven terrain without slip: simulation and experiments. Mech. Based Des. Struct. Mach. 41, 60–78 (2013)

    Article  Google Scholar 

  20. Sidek, N., Sarkar, N.: Exploiting wheel slips of mobile robots to improve navigation performance. Adv. Robot. 27, 627–639 (2013)

    Article  Google Scholar 

  21. Mohammadpour, E., Naraghi, M.: Robust adaptive stabilization of skid steer wheeled mobile robots considering slipping effects. Adv. Robot. 205-227, 25 (2011)

    Google Scholar 

  22. Sidharthan, R. K., Kannan, R., Srinivasan, S., Balas, V. E.: Stochastic wheel-slip compensation based robot localization and mapping. Adv. Electr. Comput. Eng. 16, 25–32 (2016)

    Article  Google Scholar 

  23. Bayar, G, Bergerman, M., Koku, A. B.: Improving the trajectory tracking performance of autonomous orchard vehicles using wheel slip compensation. Biosyst. Eng. 146, 149–164 (2016)

    Article  Google Scholar 

  24. Fondahl, K., Kuehn, D., Beinersdorf, F., Bernhard, F., Grimminger, F., Schilling, M., Kirchner, F.: An Adaptive Sensor Foot for a Bipedal and Quadrupedal Robot. In: Biomedical Robotics and Biomechatronics (Biorob), IEEE RAS & EMBS International Conference, pp. 270–275 (2012)

  25. Natalie, G., Dolores, B.: Nasa’s opportunity rover rolls free on mars (2006)

  26. Nagatani, K., Ikeda, A., Sato, K., Yoshida, K.: Accurate Estimation of Drawbar Pull of Wheeled Mobile Robots Traversing Sandy Terrain Using Built-In Force Sensor Array Wheel. In: Intelligent Robots and Systems, IROS 2009. IEEE/RSJ International Conference, pp. 2373–2378 (2009)

  27. Shirai, T., Ishigami, G.: Development Of in-wheel sensor system for accurate measurement of wheel terrain interaction characteristics. J. Terrramech. 51-61, 62 (2015)

    Google Scholar 

  28. Masehian, E., Katebi, Y.: Sensor-Based motion planning of wheeled mobile robots in unknown dynamic environments. J. Intell. Robot. Syst. 74(3-4), 893 (2014)

    Article  Google Scholar 

  29. Núñez, P., Vazquez-Martin, R., Bandera, A., Sandoval, F.: Fast Laser scan matching approach based on adaptive curvature estimation for mobile robots. Robotica 27, 469–479 (2009)

    Article  Google Scholar 

  30. Tungadi, F., Kleeman, L.: Autonomous Loop exploration and SLAM with fusion of advanced sonar and laser polar scan matching. Robotica 30, 91–105 (2012)

    Article  Google Scholar 

  31. Lauber, A., Sandell, B., Holmbom, P., Pedersen, O.: Tactile Sensors for industrial robots, vol. 8 (1988)

  32. Kinoshita, G. I.: Representation and tactile sensing of 3-D objects by a gripper finger. Robotica 1, 217–222 (1983)

    Article  Google Scholar 

  33. Frigola, M., Casals, A., Amat, J.: Human-Robot Interaction Based on a Sensitive Bumper Skin. In: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference, pp. 283–287 (2006)

  34. Iwata, H., Sugano, S.: Human-Robot-Contact-State Identification Based on Tactile Recognition. In: IEEE Transactions on Industrial Electronics, vol. 52, pp. 1468–1477 (2005)

  35. Ishiguro, H., Ono, T., Imai, M., Maeda, T., Kanda, T., Nakatsu, R.: Robovie: An interactive humanoid robot. Ind. Robot: Int. J. 28(6), 498–504 (2001)

    Article  Google Scholar 

  36. Pan, Z., Zhu, Z.: Flexible Full-body tactile sensor of low cost and minimal output connections for service robot. Ind. Robot: Int. J. 32, 485–491 (2005)

    Article  Google Scholar 

  37. Lowe, M., King, A., Lovett, E., Papakostas, T.: Flexible Tactile sensor technology: bringing haptics to life. Sensor Rev. 24, 33–36 (2004)

    Article  Google Scholar 

  38. Chen, H.: Robust stabilization for a class of dynamic feedback uncertain nonholonomic mobile robots with input saturation[J]. Int. J. Control Autom. Syst. 12(6), 1216–1224 (2014)

    Article  Google Scholar 

  39. Chen, H, Ding, S, Chen, X, et al.: Global finite-time stabilization for nonholonomic mobile robots based on visual servoing[J]. Int. J. Adv. Robot. Syst. 11(11), 180 (2014)

    Article  Google Scholar 

  40. Chen, H, Zhang, B, Zhao, T, et al.: Finite-time tracking control for extended nonholonomic chained-form systems with parametric uncertainty and external disturbance[J]. J. Vib. Control. 24(1), 100–109 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xiong, H., Xiong, H., Chen, Y., Chen, Y., Li, X., Li, X., Zhang, J.: A Scan matching simultaneous localization and mapping algorithm based on particle filter. Ind. Robot: Int. J. 43, 607–616 (2016)

    Article  Google Scholar 

  42. Ebrahimi, S., Eberhard, P.: Contact Of Planar Flexible Multibody Systems Using a Linear Complementarity Formulation. PAMM 5(1), 197–198 (2005)

    Article  MATH  Google Scholar 

  43. Tayefi, M., Geng, Z.: Self-Balancing controlled Lagrangian and geometric control of unmanned mobile robots. Journal of Intelligent &, Robotic Systems 90, 1–13 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Ebrahimi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S., Mardani, A. A New Contact Angle Detection Method for Dynamics Estimation of a UGV Subject to Slipping in Rough-Terrain. J Intell Robot Syst 95, 999–1019 (2019). https://doi.org/10.1007/s10846-018-0932-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0932-3

Keywords

Navigation