Skip to main content
Log in

Three Dimensional Collision Avoidance for Multi Unmanned Aerial Vehicles Using Velocity Obstacle

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Recently, multi-UAV systems are attracting growing interests. It offers wide range of applications in civilian and military environment, carrying out dangerous missions that manned aircraft cannot offer. Currently, an important challenge is the collision avoidance algorithm. The idea is to use the collision avoidance algorithm to control the multi-UAV systems. This will guarantee the safety of the UAVs. The UAVs will complete the missions without colliding with any moving or static obstacles. This topic has motivated the development of various collision avoidance algorithms. In this paper, we proposed some improvements on the three-dimensional velocity obstacle algorithm proposed in Jenie et al. (J. Guid. Control Dyn. 39(10), 2312–2323 25). Our improvements are threefold. First, we indicate the limitations of the original 3D collision avoidance method and present the modifications on the algorithm. Second, we develop the velocity obstacle method to be capable of handling cube obstacles in 3D space. Third, a real flight test is conducted to verify the effectiveness of the proposed three-dimensional velocity obstacle method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, S., Teo, R., Liu, W., Dymkou, S.M.: Distributed cooperative UAV loss detection and auto-replacement protocol with guaranteed properties. J. Intell. Robot. Syst. 93(1), 303–316 (2019)

    Article  Google Scholar 

  2. Huang, S., Teo, R., Liu, W., Dymkou, S.M.: Agent model for multi-UAV control via protocol designs. Int. J. Intell. Comput. Cybern. 10(4), 412–429 (2017)

    Article  Google Scholar 

  3. Zhang, G., Shang, B., Chen, Y.Q., Moyes, H.: SmartCaveDrone: 3D cave mapping using UAVs as robotic co-archaeologists. In: 2017 International Conference on Unmanned Aircraft Systems, pp 1052–1057. IEEE, Miami (2017)

  4. Zhang, G., Chen, Y.Q., Moyes, H.: Optimal 3D reconstruction of caves using small unmanned aerial systems and GGB-D cameras. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp 410–415. IEEE, Dallas (2018)

  5. Chevet, T., Maniu, C.S., Vlad, C., Zhang, Y.: Voronoi-based UAVs formation deployment and reconfiguration using MPC techniques. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp 9–14. IEEE, Dallas (2018)

  6. Yu, X., Zhang, Y.: Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects. Progress Aeros. Sci. 74, 152–166 (2015)

    Article  Google Scholar 

  7. Yu, X., Zhou, X., Zhang, Y.: Collision-free trajectory generation and tracking for UAVs using Markov decision process in a cluttered environment. J. Intell. Robot. Syst. 93(1–2), 17–32 (2019)

    Article  Google Scholar 

  8. Zhou, X., Yu, X., Peng, X.: UAV collision avoidance based on varying cells strategy. IEEE Transactions on Aerospace and Electronic Systems, to be published, https://doi.org/10.1109/TAES.2018.2875556

    Article  Google Scholar 

  9. Preiss, J.A., Hönig, W., Ayanian, N., Sukhatme, G.S.: Downwash-aware trajectory planning for large quadrotor teams, arXiv:1704.04852v2 [cs.RO] (2017)

  10. Manathara, J.G., Ghose D.: Reactive collision avoidance of multiple realistic UAVs. Aircraft Eng. Aerosp. Technol. 83(6), 388–396 (2011)

    Article  Google Scholar 

  11. Lalish, E., Morgansen, K.A.: Distributed reactive collision avoidance. Auton. Robots 32(3), 207–226 (2012)

    Article  Google Scholar 

  12. Lao, M., Tang, J.: Cooperative multi-UAV collision avoidance based on distributed dynamic optimization and causal analysis. Appl. Sci. 7(1), 83 (2017)

    Article  Google Scholar 

  13. Migliaccio, G., Mengali, G., Galatolo, R.: Conflict detection and resolution algorithms for UAVs collision avoidance. Aeronaut. J. 118(1205), 828–842 (2016)

    Article  Google Scholar 

  14. Han, S.C., Bang, H., Yoo, C.S.: Proportional navigation-based collision avoidance for UAVs. Int. J. Control Autom. Syst. 7(4), 553–565 (2009)

    Article  Google Scholar 

  15. Vera, S., Cobano, J.A., Heredia, G., Ollero, A.: Collision avoidance for multiple UAVs using rolling-horizon policy. J. Intell. Robot. Syst. 84(14), 387–396 (2016)

    Article  Google Scholar 

  16. Budiyanto, A., Cahyadi, A., Adji, T.B., Wahyunggoro, O., Grafika, J.: UAV obstacle avoidance using potential field under dynamic environment. In: International Conference on Control, Electronics, Renewable Energy Communications, pp. 187–192 (2015)

  17. Mac, T.T., Copot, C., Hernandez, A., De Keyser, R.: Improved potential field method for unknown obstacle avoidance using UAV in indoor environment. In: SAMI 2016 - IEEE 14th International Symposium Applied Machine Intelligence Informatics, pp. 345–350 (2016)

  18. Huang, S., Swee, R., Teo, H., Liu, W., Dymkou, S.M.: Distributed cooperative collision avoidance control and implementation for multi-unmanned aerial vehicles. In: Proc. of 2017 11th Asian Control Conference (ASCC), pp. 222–227. Gold Coast (2017)

  19. Tan, C.Y., Huang, S., Tan, K.K., Teo, S.H.R.: Three-dimensional cooperative collision avoidance design on unmanned aerial vehicle. In: 2018 International Conference on Unmanned Aircraft Systems, pp. 522–530. Dallas (2018)

  20. Jenie, Y.I., Van Kampen, E.-J., de Visser, C.C., Ellerbroek, J., Hoekstra, J.M.: Selective velocity obstacle method for deconflicting maneuvers applied to unmanned aerial vehicles. J. Guid. Control Dyn., 38(6) (2015)

    Article  Google Scholar 

  21. Kuwata, Y., Wolf, M.T., Zarzhitsky, D., Huntsberger, T.L.: Safe maritime navigation with COLREGS using velocity obstacles, 4728–4734 (2011)

  22. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. I. J. Robot. Res 17, 760–772 (1998)

    Article  Google Scholar 

  23. Chakravarthy, A., Ghose, D.: Obstacle avoidance in a dynamic environment: a collision cone approach. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 28(5), 562–574 (1998)

    Article  Google Scholar 

  24. Jenie, Y.I., van Kampen, E., de Visser, C.C., Ellerbroek, J., Hoekstra, J.M.: Three-dimensional velocity obstacle method for UAV deconflicting maneuvers. AIAA Guidance, Navigation and Control Conference, 116 (2016)

  25. Jenie, Y.I., van Kampen, E.-J., de Visser, C.C., Ellerbroek, J., Hoekstra, J.M.: Three-dimensional velocity obstacle method for uncoordinated avoidance maneuvers of unmanned aerial vehicles. J. Guid. Control Dyn. 39(10), 2312–2323 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunan Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A short version of this paper was presented in ICUAS 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C.Y., Huang, S., Tan, K.K. et al. Three Dimensional Collision Avoidance for Multi Unmanned Aerial Vehicles Using Velocity Obstacle. J Intell Robot Syst 97, 227–248 (2020). https://doi.org/10.1007/s10846-019-01055-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01055-5

Keywords

Navigation