Skip to main content
Log in

Adaptive Extended State Observer-Based Nonsingular Terminal Sliding Mode Control for the Aircraft Skin Inspection Robot

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Many application areas call for robots to carry out tasks for human safety and work reliability. An aircraft skin inspection robot is introduced in this paper, which sticks to the surface of an aircraft by suction adhesion. Since the vibration during movement of the robot limits the measurement accuracy, the purpose of operating adsorption force is to ensure a smooth and fast movement of the robot. Firstly, a minimum adsorption force guaranteeing the safety of the robot is analyzed and an adsorption system with unmeasured states, unknown disturbances, and parameter uncertainties is presented. Secondly, an adaptive extended state observer (ESO) is developed not only to estimate the unmeasured states but also to eliminate the impact of the unknown disturbances and parameter uncertainties. Moreover, the problem of stochastic stability analysis for the estimated error system is also discussed. An adaptive ESO-based nonsingular terminal sliding mode control(NTSMC) is then presented by using Lyapunov synthesis. Finally, the simulation and experimental results show the feasibility of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu, J., Wang, C.: The adsorption force self-adjustment for the aircraft skin inspection robot with double frames. In: 2017 36th Chinese IEEE Control Conference (CCC), pp 6708–6713 (2017)

  2. Santos, H.B., Teixeira, M.A.S., de Oliveira, A.S., de Arruda, L.V.R., Neves-Jr, F.: Quasi-omnidirectional fuzzy control of a climbing robot for inspection tasks. J. Intell. Robot. Syst. 91(2), 333–347 (2018)

    Article  Google Scholar 

  3. Pope, M.T., Kimes, C.W., Jiang, H., Hawkes, E.W., Estrada, M.A., Kerst, C.F., Cutkosky, M.R.: A multimodal robot for perching and climbing on vertical outdoor surfaces. IEEE Trans. Robot. 33(1), 38–48 (2017)

    Article  Google Scholar 

  4. Wu, X., Liu, J., Zhou, Y., Lv, Q., Hu, C.: Movement control and attitude adjustment of climbing robot on flexible surfaces. IEEE Trans. Ind. Electron. 65(3), 2618–2628 (2018)

    Article  Google Scholar 

  5. Lee, G., Kim, H., Seo, K., Kim, J., Kim, H.S.: MultiTrack: a multi-linked track robot with suction adhesion for climbing and transition. Rob. Autom. Syst. 72, 207–216 (2015)

    Article  Google Scholar 

  6. Wang, Z., Zhang, K., Chen, Y., Luo, Z., Zheng, J.: A realtime weld line detection for derusting wall-climbing robot using dual cameras. J. Manuf. Process. 27, 76–86 (2017)

    Article  Google Scholar 

  7. Wang, H., Yamamoto, A.: Analyses and solutions for the buckling of thin and flexible electrostatic inchworm climbing robots. IEEE Trans. Robot. 33(4), 889–900 (2017)

    Article  Google Scholar 

  8. Sano, S., Ohara, K., Ashizawa, S., Ichikawa, A., Suzuki, S., Omichi, T., Fukuda, T.: Development of wall climbing robot using passive joint and vacuum pad on rough surface. In: IEEE International Symposium on Micro-Nanomechatronics and Human Science (MHS), pp 1–3 (2017)

  9. Zhou, Q., Li, X.: Experimental investigation on climbing robot using rotation-flow adsorption unit. Rob. Autom. Syst. 105, 112–120 (2018)

    Article  Google Scholar 

  10. Navaprakash, N., Ramachandraiah, U., Muthukumaran, G., Rakesh, V., Singh, A.P.: Modeling and experimental analysis of suction pressure generated by active suction chamber based wall climbing robot with a novel bottom restrictor. Prog. Comput. Sci. 133, 847–854 (2018)

    Article  Google Scholar 

  11. Mir-Nasiri, N., Ali, M.H.: Portable autonomous window cleaning robot. Prog. Comput. Sci. 133, 197–204 (2018)

    Article  Google Scholar 

  12. Yi, Z., Gong, Y., Wang, Z., Wang, X.: Development of a wall climbing robot for ship rust removal. In: International Conference on Mechatronics and Automation, pp 4610–4615. IEEE (2009)

  13. Pan, Y., Yu, H.: Composite learning robot control with guaranteed parameter convergence. Automatica 89, 398–406 (2018)

    Article  MathSciNet  Google Scholar 

  14. Huang, J., Wang, W., Wen, C., Zhou, J.: Adaptive control of a class of strict-feedback time-varying nonlinear systems with unknown control coefficients. Automatica 93, 98–105 (2018)

    Article  MathSciNet  Google Scholar 

  15. Wang, W., Wen, C., Huang, J.: Distributed adaptive asymptotically consensus tracking control of nonlinear multi-agent systems with unknown parameters and uncertain disturbances. Automatica 77, 133–142 (2017)

    Article  MathSciNet  Google Scholar 

  16. Dai, J., Ren, B.: UDE-based robust boundary control for an unstable parabolic PDE with unknown input disturbance. Automatica 93, 363–368 (2018)

    Article  MathSciNet  Google Scholar 

  17. Nascimento, T.P., Basso, G.F., Dorea, C., Goncalves, L.M.G.: Perception-driven motion control based on stochastic nonlinear model predictive controllers. In: IEEE/ASME Transactions on Mechatronics. https://doi.org/10.1109/TMECH.2019.2916562 (2019)

  18. Cui, R., Chen, L., Yang, C., Chen, M.: Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Ind. Electron. 64(8), 6785–6795 (2017)

    Article  Google Scholar 

  19. Esmaeili, N., Alfi, A., Khosravi, H.: Balancing and trajectory tracking of two-wheeled mobile robot using backstepping sliding mode control: design and experiments. J. Intell. Robot. Syst. 87(3-4), 601–613 (2017)

    Article  Google Scholar 

  20. Bartolini, G., Levant, A., Pisano, A., Usai, E.: Adaptive second-order sliding mode control with uncertainty compensation. Int. J. Control. 89(9), 1747–1758 (2016)

    Article  MathSciNet  Google Scholar 

  21. Al-Ghanimi, A., Zheng, J., Man, Z.: A fast non-singular terminal sliding mode control based on perturbation estimation for piezoelectric actuators systems. Int. J. Control. 90(3), 480–491 (2017)

    Article  MathSciNet  Google Scholar 

  22. Rizvi, S.A.A., Memon, A.Y.: An extended observer-based robust nonlinear speed sensorless controller for a PMSM. Int. J. Control. 92(9), 1–13 (2018)

  23. Aranovskiy, S., Ortega, R., Romero, J.G., Sokolov, D.: A globally exponentially stable speed observer for a class of mechanical systems: experimental and simulation comparison with high-gain and sliding mode designs. Int. J. Control. 92(7), 1–14 (2017)

  24. Gonzalez-Sierra, J., Rios, H., Dzul, A.: Quad-rotor robust time-varying formation control: a continuous sliding-mode control approach. Int. J. Control., (Just-Accepted), pp. 1–36. https://doi.org/10.1080/00207179.2018.1526413 (2018)

  25. Venkataraman, S.T., Gulati, S.: Control of nonlinear systems using terminal sliding modes. J. Dyn. Syst. Meas. Control. 115(3), 554–560 (1993)

    Article  Google Scholar 

  26. Li, H., Shi, P., Yao, D., Wu, L.: Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 64, 133–142 (2016)

    Article  MathSciNet  Google Scholar 

  27. Taleb, M., Plestan, F.: Adaptive robust controller based on integral sliding mode concept. Int. J. Control. 89(9), 1788–1797 (2016)

    Article  MathSciNet  Google Scholar 

  28. Mehta, S., Vijayaraghavan, K.: Design of Sliding Observers for Lipschitz nonlinear system using a new time-averaged Lyapunov function. Int. J. Control., pp. 1–10. https://doi.org/10.1080/00207179.2018.1441551 (2018)

  29. Fernandes, D.D.A., Sørensen, A.J., Pettersen, K.Y., Donha, D.C.: Output feedback motion control system for observation class ROVs based on a high-gain state observer: theoretical and experimental results. Control Eng. Pract. 39, 90–102 (2015)

    Article  Google Scholar 

  30. Zhao, Z.L., Guo, B.Z.: A nonlinear extended state observer based on fractional power functions. Automatica 81, 286–296 (2017)

    Article  MathSciNet  Google Scholar 

  31. Ginoya, D., Shendge, P.D., Phadke, S.B.: Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Trans. Ind. Electron. 61(4), 1983–1992 (2014)

    Article  Google Scholar 

  32. Wang, Q., Yang, F., Yang, Q., Chen, J., Guan, H.: Experimental analysis of new high-speed powerful digital solenoid valves. Energy Convers. Manag. 52(5), 2309–2313 (2011)

    Article  Google Scholar 

  33. Liu, Z.C.: Fluid network theory, pp 23–36. Machinery Industry Press, Beijing (1988)

    Google Scholar 

  34. Corless, M., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Autom. Control 26(5), 1139–1144 (1981)

    Article  MathSciNet  Google Scholar 

  35. Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)

    Article  MathSciNet  Google Scholar 

  36. Yang, L., Yang, J.: Nonsingular fast terminal sliding mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China (Grant No. 61573185) and JiangSu Scientific Support Program of China (Grant No. BE2010190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congqing Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, C. & Hua, S. Adaptive Extended State Observer-Based Nonsingular Terminal Sliding Mode Control for the Aircraft Skin Inspection Robot. J Intell Robot Syst 98, 721–732 (2020). https://doi.org/10.1007/s10846-019-01067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01067-1

Keywords

Navigation