Skip to main content

Advertisement

Log in

Convergence of Machine Learning and Robotics Communication in Collaborative Assembly: Mobility, Connectivity and Future Perspectives

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Collaborative assemblies of robots are promising the next generation of robot applications by ensuring that safe and reliable robots work collectively toward a common goal. To maintain this collaboration and harmony, effective wireless communication technologies are required in order to enable the robots share data and control signals amongst themselves. With the advent of Machine Learning (ML), recent advancements in intelligent techniques for the domain of robot communications have led to improved functionality in robot assemblies, ability to take informed and coordinated decisions, and an overall improvement in efficiency of the entire swarm. This survey is targeted towards a comprehensive study of the convergence of ML and communication for collaborative assemblies of robots operating in the space, on the ground and in underwater environments. We identify the pertinent issues that arise in the case of robot swarms like preventing collisions, keeping connectivity between robots, maintaining the communication quality, and ensuring collaboration between robots. ML techniques that have been applied for improving different criteria such as mobility, connectivity, Quality of Service (QoS) and efficient data collection for energy efficiency are then discussed from the viewpoint of their importance in the case of collaborative robot assemblies. Lastly, the paper also identifies open issues and avenues for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aadhityan, A.: A novel method for developing robotics via artificial intelligence and internet of things. IJCA Proc. Nat. Conf. Fut. Comput. 2014 NCFC 2014(1), 1–4 (2014)

    Google Scholar 

  2. Abbas, N., Nasser, Y., El Ahmad, K.: Recent advances on artificial intelligence and learning techniques in cognitive radio networks. EURASIP J. Wirel. Commun. Netw. 2015(1), 174 (2015)

    Google Scholar 

  3. Akat, S.B., Gazi, V., Marques, L.: Asynchronous particle swarm optimization-based search with a multi-robot system: Simulation and implementation on a real robotic system. Turkish J. Electr. Eng. Comput. Sci. 18(5), 749–764 (2010)

    Google Scholar 

  4. Akshay, P., Tabassum, N., Fathima, S., Ahmed, I.: Artificial neural network and iot based scheme in internet of robotic things. Perspectives in Communication, Embedded-systems and Signal-processing-PiCES 2(6), 126–130 (2018)

    Google Scholar 

  5. Al Islam, A.A., Raghunathan, V.: itcp: An intelligent tcp with neural network based end-to-end congestion control for ad-hoc multi-hop wireless mesh networks. Wirel. Netw 21(2), 581–610 (2015)

    Google Scholar 

  6. Al-Sakran, H.O.: Intelligent traffic information system based on integration of internet of things and agent technology. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 6(2), 37–43 (2015)

    Google Scholar 

  7. Algabri, M., Mathkour, H., Mekhtiche, M.A., Bencherif, M.A., Alsulaiman, M., Arafah, M.A., Ghaleb, H.: Wireless vision-based fuzzy controllers for moving object tracking using a quadcopter. Int. J. Distrib. Sensor Netw. 13(4), 1550147717705,549 (2017)

    Google Scholar 

  8. Alsamhi, S., Ansari, M., Hebah, M., Ahmed, A., Hatem, A., Alasali, M.: Adaptive handoff prediction and appreciate decision using anfis between terrestrial communication and hap (2018)

  9. Alsamhi, S., Gapta, S., Rajput, N., Saket, R.: Network architectures exploiting multiple tethered balloon constellations for coverage extension. In: Proc. 6th International Conference on Advances in Engineering Sciences and Applied Mathematics, pp 1–6, Malaysia (2016)

  10. Alsamhi, S., Rajput, N.: Methodology for coexistence of high altitude platform ground stations and radio relay stations with reduced interference. Int. J. Sci. Eng. Res. 3, 1–7 (2012)

    Google Scholar 

  11. Alsamhi, S., Rajput, N.: Neural network in a joint haps and terrestrial fixed broadband system. Int. J. Technol. Explor. Learn. (IJTEL) 3, 344–348 (2014)

    Google Scholar 

  12. Alsamhi, S., Rajput, N.: Performance and analysis of propagation models for efficient handoff in high altitude platform system to sustain qos. In: 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, pp. 1–6 (2014)

  13. Alsamhi, S.H.: Quality of service (qos) enhancement techniques in high altitude platform based communication networks. Electronics Engineering Ph.D, pp. 155 (2015)

  14. Alsamhi, S.H., Ansari, M.S., Ma, O., Almalki, F., Gupta, S.K.: Tethered balloon technology in design solutions for rescue and relief team emergency communication services. Disaster Med. Public Health Preparedness, 1–8 (2018)

  15. Alsamhi, S.H., Ansari, M.S., Rajput, N.S.: Disaster coverage predication for the emerging tethered balloon technology: Capability for preparedness, detection, mitigation, and response. Disaster Med. Public Health Preparedness 12(2), 222–231 (2018)

    Google Scholar 

  16. Alsamhi, S.H., Gupta, S.K., Rajput, N.: Performance evaluation of broadband service delivery via tethered balloon technology. In: 2016 11th International Conference on Industrial and Information Systems (ICIIS), pp. 133–138 (2016)

  17. Alsamhi, S.H., Ma, O., Ansari, M.S., Gupta, S.K.: Collaboration of drone and internet of public safety things in smart cities: An overview of qos and network performance optimization. Drones 3(1), 13 (2019)

    Google Scholar 

  18. Alsamhi, S.H., Rajput, N.: An intelligent hap for broadband wireless communications: developments, qos and applications. Int. J. Electron. Electric. Eng. 3(2), 134–143 (2015)

    Google Scholar 

  19. Alsamhi, S.H., Rajput, N.S.: Implementation of call admission control technique in hap for enhanced qos in wireless network deployment. Telecommun. Syst., 1–11. https://doi.org/10.1007/s11235-015-0108-4 (2015)

  20. Alsamhi, S.H., Rajput, N.S.: An intelligent hand-off algorithm to enhance quality of service in high altitude platforms using neural network. Wirel. Pers. Commun. 82(4), 2059–2073 (2015). https://doi.org/10.1007/s11277-015-2333-2

    Article  Google Scholar 

  21. Alsamhi, S.H., Rajput, N.S.: An efficient channel reservation technique for improved qos for mobile communication deployment using high altitude platform. Wirel. Pers. Commun. 91(3), 1095–1108 (2016). https://doi.org/10.1007/s11277-016-3514-3

    Article  Google Scholar 

  22. Alsheikh, M.A., Lin, S., Niyato, D., Tan, H.P.: Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Commun. Surv. Tutor. 16(4), 1996–2018 (2014)

    Google Scholar 

  23. Arsénio, A., Serra, H., Francisco, R., Nabais, F., Andrade, J., Serrano, E.: Internet of intelligent things: Bringing artificial intelligence into things and communication networks, 1–37 (2014)

  24. Asbach, R.: Using an intelligent uav swarm in natural disaster environments (2018)

  25. Basagni, S., Di Valerio, V., Gjanci, P., Petrioli, C.: Finding marlin: Exploiting multi-modal communications for reliable and low-latency underwater networking. In: IEEE INFOCOM 2017-IEEE Conference on Computer Communications, pp. 1–9 (2017)

  26. Batth, R.S., Nayyar, A., Nagpal, A.: Internet of robotic things: Driving intelligent robotics of future-concept, architecture, applications and technologies. In: 2018 4th International Conference on Computing Sciences (ICCS), pp 151–160 (2018)

  27. Bekmezci, I., Ermis, M., Kaplan, S.: Connected multi uav task planning for flying ad hoc networks. In: 2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 28–32 (2014)

  28. Bianco, R., Nolfi, S.: Toward open-ended evolutionary robotics: Evolving elementary robotic units able to self-assemble and self-reproduce. Connect. Sci. 16(4), 227–248 (2004)

    Google Scholar 

  29. Bordetsky, A., Glose, C., Mullins, S., Bourakov, E.: Machine learning of semi-autonomous intelligent mesh networks operation expertise. In: Proceedings of the 52nd Hawaii International Conference on System Sciences (2019)

  30. Boutaba, R., Salahuddin, M.A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F., Caicedo, O.M.: A comprehensive survey on machine learning for networking: Evolution, applications and research opportunities. J. Int. Serv. Appl. 9(1), 16 (2018)

    Google Scholar 

  31. Braga, J.R., Velho, H.F., Conte, G., Doherty, P., Shiguemori, E.: An image matching system for autonomous uav navigation based on neural network. In: 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1–6 (2016)

  32. Castello, E.: The Blockchain: A New Framework for Robotic Swarm Systems, 2, 1037–1058 (2019)

  33. Challita, U., Ferdowsi, A., Chen, M., Saad, W.: Machine learning for wireless connectivity and security of cellular-connected uavs. IEEE Wirel. Commun. 26(1), 28–35 (2019)

    Google Scholar 

  34. Chand, M., Ramachandran, N., Stoyanov, D., Lovat, L.: Robotics artificial intelligence and distributed ledgers in surgery: Data is key! (2018)

  35. Chen, M., Mozaffari, M., Saad, W., Yin, C., Debbah, M., Hong, C.S.: Caching in the sky: Proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience. IEEE J. Selected Areas Commun. 35(5), 1046–1061 (2017)

    Google Scholar 

  36. Chen, M., Saad, W., Yin, C.: Liquid state machine learning for resource allocation in a network of cache-enabled lte-u uavs. GLOBECOM 2017-2017 IEEE Global Communications Conference, pp. 1–6 (2017)

  37. Cui, L., Yang, S., Chen, F., Ming, Z., Lu, N., Qin, J.: A survey on application of machine learning for internet of things. Int. J. Mach. Learn. Cybern. 9(8), 1399–1417 (2018)

    Google Scholar 

  38. Dauphin, L., Adjih, C., Petersen, H., Baccelli, E.: Low-cost robots in the internet of things: Hardware, software & communication aspects. In: Proceedings of the 2017 International Conference on Embedded Wireless Systems and Networks, pp. 284–289 (2017)

  39. Dawood, F., Loo, C.K.: Incremental episodic segmentation and imitative learning of humanoid robot through self-exploration. Neurocomputing 173, 1471–1484 (2016)

    Google Scholar 

  40. Derr, K., Manic, M.: Multi-robot, multi-target particle swarm optimization search in noisy wireless environments. In: 2009 2nd Conference on Human System Interactions, pp. 81–86 (2009)

  41. Di, M., Joo, E.M.: A survey of machine learning in wireless sensor netoworks from networking and application perspectives. In: 2007 6th International Conference on Information, Communications & Signal Processing, pp. 1–5 (2007)

  42. Dinh-Van, N., Nashashibi, F., Thanh-Huong, N., Castelli, E.: Indoor intelligent vehicle localization using wifi received signal strength indicator. In: 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), pp. 33–36 (2017)

  43. Doriya, R., Mishra, S., Gupta, S.: A brief survey and analysis of multi-robot communication and coordination. In: 2015 International Conference on Computing, Communication & Automation (ICCCA), pp. 1014–1021 (2015)

  44. Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S.M., Christensen, A.L.: Evolution of collective behaviors for a real swarm of aquatic surface robots. PloS one 11(3), e0151,834 (2016)

    Google Scholar 

  45. Fadlullah, Z.M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., Mizutani, K.: State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Commun. Surv. Tutor. 19(4), 2432–2455 (2017). https://doi.org/10.1109/COMST.2017.2707140

    Article  Google Scholar 

  46. Fernandes, L.C., Souza, J.R., Pessin, G., Shinzato, P.Y., Sales, D., Mendes, C., Prado, M., Klaser, R., Magalhaes, A.C., Hata, A., et al: Carina intelligent robotic car: Architectural design and applications. J. Syst. Archit. 60(4), 372–392 (2014)

    Google Scholar 

  47. Ferrein, A., Niemueller, T., Schiffer, S., Lakemeyer, G.: Lessons learnt from developing the embodied ai platform caesar for domestic service robotics. AAAI Spring Symposium: Designing Intelligent Robots (2013)

  48. Fink, J.: Communication for teams of networked robots (2011)

  49. Foerster, J., Assael, I.A., de Freitas, N., Whiteson, S.: Learning to communicate with deep multi-agent reinforcement learning. Adv. Neural Inf. Process. Syst., 2137–2145 (2016)

  50. Furno, L., Blanke, M., Galeazzi, R., Christensen, D.J.: Self-reconfiguration of modular underwater robots using an energy heuristic. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6277–6284 (2017)

  51. Gerla, M., Lee, E.K., Pau, G., Lee, U.: Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds. In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 241–246 (2014)

  52. Ghouti, L.: Mobility prediction in mobile ad hoc networks using neural learning machines. Simul. Model. Pract. Theory 66, 104–121 (2016)

    Google Scholar 

  53. Ghouti, L., Sheltami, T.R., Alutaibi, K.S.: Mobility prediction in mobile ad hoc networks using extreme learning machines. Procedia Comput. Sci. 19, 305–312 (2013)

    Google Scholar 

  54. Girimonte, D., Izzo, D.: Artificial intelligence for space applications, pp. 235–253 (2007)

  55. Glazunov, V., Utkin, L., Ryabinin, M., Popov, S.: The rules selection algorithm for network traffic of robot groups in intelligent transportation systems. In: 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), pp. 533–535 (2017)

  56. Gopalapillai, R., Gupta, D., Tsb, S.: Pattern identification of robotic environments using machine learning techniques. Procedia Comput. Sci. 115, 63–71 (2017)

    Google Scholar 

  57. Grieco, L.A., Rizzo, A., Colucci, S., Sicari, S., Piro, G., Di Paola, D., Boggia, G.: Iot-aided robotics applications: Technological implications, target domains and open issues. Comput. Commun. 54, 32–47 (2014)

    Google Scholar 

  58. Gu, D.L., Pei, G., Ly, H., Gerla, M., Zhang, B., Hong, X.: Uav aided intelligent routing for ad-hoc wireless network in single-area theater. In: Wireless Communications and Networking Confernce, 2000 WCNC. 2000 IEEE, vol. 3, pp. 1220–1225 (2000)

  59. Gueaieb, W., Miah, M.S.: An intelligent mobile robot navigation technique using rfid technology. IEEE Trans. Instrum. Meas. 57(9), 1908–1917 (2008)

    Google Scholar 

  60. Gupta, A., Choudhury, T., Satapathy, S.C., Chaudhary, D.K.: An extensive study on iort and its connectivity coverage limit. In: Proceedings of the Second International Conference on Computational Intelligence and Informatics, pp. 693–705 (2018)

  61. Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using deep reinforcement learning. In: International Conference on Autonomous Agents and Multiagent Systems, pp. 66–83 (2017)

  62. Guzey, H., Vignesh, N., Jagannathan, S., Dierks, T., Acar, L.: Distributed consensus-based event-triggered approximate control of nonholonomic mobile robot formations. Am. Control Conf. (ACC) 2017, 3194–3199 (2017)

    Google Scholar 

  63. Hassan, M.A.A.: A review of wireless technology usage for mobile robot controller. In: Proceeding of the International Conference on System Engineering and Modeling (ICSEM 2012), pp. 7–12 (2012)

  64. Hauert, S., Zufferey, J.C., Floreano, D.: Evolved swarming without positioning information: An application in aerial communication relay. Auton. Robot. 26(1), 21–32 (2009)

    Google Scholar 

  65. Hereford, J.M., Siebold, M., Nichols, S.: Using the particle swarm optimization algorithm for robotic search applications. In: 2007 IEEE Swarm Intelligence Symposium, pp. 53–59 (2007)

  66. Huang, H., Savkin, A.: Towards the internet of flying robots: A survey. Sensors 18(11), 4038 (2018)

    Google Scholar 

  67. Hvizdoš, J., Vojtko, I., Koscelanský, M., Pavlov, J., Vaščák, J., Sinčák, P.: Applications of remote controlled robotics in the intelligent space. In: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 000,117–000,122 (2017)

  68. Irizarry, J., Gheisari, M., Williams, G., Roper, K.: Ambient intelligence environments for accessing building information: A healthcare facility management scenario. Facilities 32(3/4), 120–138 (2014)

    Google Scholar 

  69. Islam, M.J., Ho, M., Sattar, J.: Dynamic reconfiguration of mission parameters in underwater human-robot collaboration. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–8 (2018)

  70. Jin, X.B., Su, T.L., Kong, J.L., Bai, Y.T., Miao, B.B., Dou, C.: State-of-the-art mobile intelligence: Enabling robots to move like humans by estimating mobility with artificial intelligence. Appl. Sci. 8(3), 379 (2018)

    Google Scholar 

  71. Jin, Z., Ma, Y., Su, Y., Li, S., Fu, X.: A q-learning-based delay-aware routing algorithm to extend the lifetime of underwater sensor networks. Sensors 17(7), 1660 (2017)

    Google Scholar 

  72. Joordens, M.A., Jamshidi, M.: Consensus control for a system of underwater swarm robots. IEEE Syst. J. 4(1), 65–73 (2010)

    Google Scholar 

  73. Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    MathSciNet  MATH  Google Scholar 

  74. Kampmann, P., Christensen, L., Fritsche, M., Gaudig, C., Hanff, H., Hildebrandt, M., Kirchner, F.: How ai and robotics can support marine mining. Offshore Technology Conference (2018)

  75. Kato, N., Fadlullah, Z.M., Tang, F., Mao, B., Tani, S., Okamura, A., Liu, J.: Optimizing space-air-ground integrated networks by artificial intelligence. IEEE Wireless Communications (2019)

  76. Khaleefa, S., Alsamhi, S., Rajput, N.: Tethered balloon technology for telecommunication, coverage and path loss. In: 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, pp. 1–4 (2014)

  77. Khan, A.: Deep reinforcement learning based tracking behavior for underwater vehicles (2018)

  78. Kostavelis, I., Nalpantidis, L., Boukas, E., Rodrigalvarez, M.A., Stamoulias, I., Lentaris, G., Diamantopoulos, D., Siozios, K., Soudris, D., Gasteratos, A.: Spartan: Developing a vision system for future autonomous space exploration robots. J. Field Robot. 31(1), 107–140 (2014)

    Google Scholar 

  79. Le Comte, B.R., Gupta, G.S., Chew, M.T.: Distributed sensors for hazard detection in an urban search and rescue operation. In: 2012 IEEE International on Instrumentation and Measurement Technology Conference (I2MTC), pp. 2385–2390 (2012)

  80. Lee, J.H., Hashimoto, H.: Intelligent space—concept and contents. Adv. Robot. 16(3), 265–280 (2002)

    Google Scholar 

  81. Li, G.: Area surveillance by an underwater robot swarm based on virtual peromone field, vol. 2. https://doi.org/10.15406/mojabb.2018.02.00065 (2018)

  82. Li, H., Yang, S.X., Seto, M.L.: Neural-network-based path planning for a multirobot system with moving obstacles. IEEE Trans. Syst, Man, Cybern. Part C (Appl. Rev.) 39(4), 410–419 (2009)

    Google Scholar 

  83. Luce, L.: Robotics and Manufacturing, pp. 167–181 (2019)

  84. Mao, Q., Hu, F., Hao, Q.: Deep learning for intelligent wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 20(4), 2595–2621 (2018)

    Google Scholar 

  85. Marconato, E.A., Rodrigues, M., Pires, R.d.M., Pigatto, D.F., Luiz Filho, C.Q., Pinto, A.R., Branco, K.R.: Avens-a novel flying ad hoc network simulator with automatic code generation for unmanned aircraft system. In: Proceedings of the 50th Hawaii International Conference on System Sciences (2017)

  86. Martins, G.S., Portugal, D., Rocha, R.P.: A comparison of general-purpose foss compression techniques for efficient communication in cooperative multi-robot tasks. In: 2014 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO), vol. 2, pp. 136–147 (2014)

  87. McGhan, C.L., Nasir, A., Atkins, E.M.: Human intent prediction using Markov decision processes. Journal of Aerospace Information Systems (2015)

  88. Mechraoui, A., Khan, Z.H., Thiriet, J.M., Gentil, S.: Co-design for wireless networked control of an intelligent mobile robot. In: International Conference on Informatics in Control, Automation and Robotics (ICINCO), p. 7 (2009)

  89. Messous, M.A., Sedjelmaci, H., Senouci, S.M.: Implementing an emerging mobility model for a fleet of uavs based on a fuzzy logic inference system. Pervasive Mob. Comput. 42, 393–410 (2017)

    Google Scholar 

  90. Messous, M.A., Senouci, S.M., Sedjelmaci, H.: Network connectivity and area coverage for uav fleet mobility model with energy constraint. In: 2016 IEEE on Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2016)

  91. Min, B.C., Kim, Y., Lee, S., Jung, J.W., Matson, E.T.: Finding the optimal location and allocation of relay robots for building a rapid end-to-end wireless communication. Ad Hoc Netw. 39, 23–44 (2016)

    Google Scholar 

  92. Min, H.Q., Zhu, J.H., Zheng, X.J.: Obstacle avoidance with multi-objective optimization by pso in dynamic environment. In: 2005 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 2950–2956 (2005)

  93. Mzahm, A.M., Ahmad, M.S., Tang, A.Y.: Agents of things (aot): An intelligent operational concept of the internet of things (iot). In: 2013 13th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 159–164 (2013)

  94. Narasimhan, R., Cox, D.C.: A handoff algorithm for wireless systems using pattern recognition. The Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1998 1, 335–339 (1998). https://doi.org/10.1109/pimrc.1998.733570

    Article  Google Scholar 

  95. Niitsuma, M., Beppu, W., Korondi, P., Kovács, S., Hashimoto, H.: Monitoring system based on ethologically inspired human-robot communication in intelligent space. In: 8th Asian Control Conference (ASCC), pp. 701–705 (2011)

  96. Oh, S.H., Suk, J.: Evolutionary design of the controller for the search of area with obstacles using multiple uavs. ICCAS 2010, 2541–2546 (2010)

    Google Scholar 

  97. Paliwal, M., Kumar, U.A.: Neural networks and statistical techniques: A review of applications. Expert Syst. Appl. 36(1), 2–17 (2009)

    Google Scholar 

  98. Park, T., Abuzainab, N., Saad, W.: Learning how to communicate in the internet of things: Finite resources and heterogeneity. IEEE Access 4, 7063–7073 (2016)

    Google Scholar 

  99. Poursheikhali, S., Zamiri-Jafarian, H.: Received signal strength based localization in inhomogeneous underwater medium. Signal Process. 154, 45–56 (2019)

    Google Scholar 

  100. Prieto, A., Becerra, J., Bellas, F., Duro, R.J.: Open-ended evolution as a means to self-organize heterogeneous multi-robot systems in real time. Robot. Auton. Syst. 58(12), 1282–1291 (2010)

    Google Scholar 

  101. Pugh, J., Martinoli, A., Zhang, Y.: Particle swarm optimization for unsupervised robotic learning. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS, pp. 92–99 (2005)

  102. Ramezani Dooraki, A., Lee, D.J.: An end-to-end deep reinforcement learning-based intelligent agent capable of autonomous exploration in unknown environments. Sensors 18(10), 3575 (2018)

    Google Scholar 

  103. Rampinelli, M., Covre, V.B., de Queiroz, F.M., Vassallo, R.F., Bastos-Filho, T.F., Mazo, M.: An intelligent space for mobile robot localization using a multi-camera system. Sensors 14(8), 15,039–15,064 (2014)

    Google Scholar 

  104. Ray, P.P.: Internet of robotic things: Concept, technologies, and challenges. IEEE Access 4, 9489–9500 (2016)

    Google Scholar 

  105. Razafimandimby, C., Loscri, V., Vegni, A.M.: A neural network and iot based scheme for performance assessment in internet of robotic things. In: 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), pp. 241–246 (2016)

  106. Razafimandimby, C., Loscri, V., Vegni, A.M.: Towards efficient deployment in Internet of Robotic Things, pp. 21–37 (2018)

  107. Real-Arce, D.A., Morales, T., Barrera, C., Hernández, J., Llinás, O.: Smart and networking underwater robots in cooperation meshes: the swarms ecsel: H2020 project. Instrument. Viewpoint 19, 19–19 (2016)

    Google Scholar 

  108. Roy Chowdhury, A.: Iot and robotics: A synergy. PeerJ Preprints 5 e2760v1 (2017)

  109. Saha, S., Matsumoto, M.: A framework for disaster management system and wsn protocol for rescue operation. TENCON 2007–2007 IEEE Region 10 Conference, 1–4 (2007)

  110. Salamat, B., Tonello, A.M.: Stochastic trajectory generation using particle swarm optimization for quadrotor unmanned aerial vehicles (uavs). Aerospace 4(2), 27 (2017)

    Google Scholar 

  111. Salomon, A.L., Wells, J.: Exploiting imagery data collected with unmanned aircraft systems (uas) for bridge inspections (2018)

  112. Sandry, E.: Re-evaluating the form and communication of social robots. Int. J. Soc. Robot. 7(3), 335–346 (2015)

    Google Scholar 

  113. Schaefer, K.E., Hill, S.G., Jentsch, F.G.: Trust in human-autonomy teaming: A review of trust research from the us army research laboratory robotics collaborative technology alliance. In: International Conference on Applied Human Factors and Ergonomics, pp. 102–114 (2018)

  114. Schleich, J., Panchapakesan, A., Danoy, G., Bouvry, P.: Uav fleet area coverage with network connectivity constraint. In: Proceedings of the 11th ACM International Symposium on Mobility Management and Wireless Access, pp. 131–138 (2013)

  115. Scilimati, V., Petitti, A., Boccadoro, P., Colella, R., Di Paola, D., Milella, A., Grieco, A.: Industrial internet of things at work: a case study analysis in robotic-aided environmental monitoring. IET Wireless Sensor Systems (2017)

  116. Selma, B., Chouraqui, S.: Neuro-fuzzy controller to navigate an unmanned vehicle. SpringerPlus 2(1), 188 (2013)

    Google Scholar 

  117. Sharma, V., Bennis, M., Kumar, R.: Uav-assisted heterogeneous networks for capacity enhancement. IEEE Commun. Lett. 20(6), 1207–1210 (2016)

    Google Scholar 

  118. Sharma, V., Chen, H.C., Kumar, R.: Driver behaviour detection and vehicle rating using multi-uav coordinated vehicular networks. J. Comput. Syst. Sci. 86, 3–32 (2017)

    MathSciNet  MATH  Google Scholar 

  119. Sharma, V., Kumar, R.: An opportunistic cross layer design for efficient service dissemination over flying ad hoc networks (fanets). In: 2015 2nd International Conference on Electronics and Communication Systems (ICECS), pp. 1551–1557 (2015)

  120. Sharma, V., Kumar, R.: Cooperative frameworks and network models for flying ad hoc networks: A survey. Concurrency and Computation: Practice and Experience, 29(4) (2017)

  121. Sharma, V., Kumar, R.: G-fanet: An ambient network formation between ground and flying ad hoc networks. Telecommun. Syst. 65(1), 31–54 (2017)

    Google Scholar 

  122. Sharma, V., Kumar, R., Rana, P.S.: Self-healing neural model for stabilization against failures over networked uavs. IEEE Commun. Lett. 19(11), 2013–2016 (2015)

    Google Scholar 

  123. Sharma, V., Sabatini, R., Ramasamy, S.: Uavs assisted delay optimization in heterogeneous wireless networks. IEEE Commun. Lett. 20(12), 2526–2529 (2016)

    Google Scholar 

  124. Sharma, V., Sabatini, R., Ramasamy, S., Srinivasan, K., Kumar, R.: Eff-fas: Enhanced fruit fly optimization based search and tracking by flying ad hoc swarm. Computing (IJAHUC) (2016)

  125. Sharma, V., Srinivasan, K., Chao, H.C., Hua, K.L., Cheng, W.H.: Intelligent deployment of uavs in 5g heterogeneous communication environment for improved coverage. J. Netw. Comput. Appl. 85, 94–105 (2017)

    Google Scholar 

  126. Sharma, V., Srinivasan, K., Kumar, R., Chao, H.C., Hua, K.L.: Efficient cooperative relaying in flying ad hoc networks using fuzzy-bee colony optimization. J. Supercomput., 1–31 (2017)

  127. Shea, T.O., Karra, K., Clancy, T.C.: Learning approximate neural estimators for wireless channel state information. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–7. https://doi.org/10.1109/MLSP.2017.8168144 (2017)

  128. Simoens, P., Dragone, M., Saffiotti, A.: The internet of robotic things: a review of concept, added value and applications. Int J. Adv. Robot. Syst. 15(1), 1729881418759,424 (2018)

    Google Scholar 

  129. Skobelev, P., Simonova, E., Zhilyaev, A., Travin, V.: Application of multi-agent technology in the scheduling system of swarm of earth remote sensing satellites. Procedia Comput. Sci. 103, 396–402 (2017)

    Google Scholar 

  130. Soni, B., Sowmya, A.: Victim detection and localisation in an urban disaster site. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2142–2147 (2013)

  131. Stender, M., Yan, Y., Karayaka, H.B., Tay, P., Adams, R.: Simulating micro-robots to find a point of interest under noise and with limited communication using particle swarm optimization. SoutheastCon 2017, 1–8 (2017)

    Google Scholar 

  132. Stottler, D.: Satellite communication scheduling, optimization, and deconfliction using artificial intelligence techniques. AIAA Infotech@ Aerospace 2010, 3424 (2010)

    Google Scholar 

  133. Sukhbaatar, S., Fergus, R.: Learning multiagent communication with backpropagation. Adv. Neural Inf. Process. Syst., 2244–2252 (2016)

  134. Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W.M., Zambaldi, V., Jaderberg, M., Lanctot, M., Sonnerat, N., Leibo, J.Z., Tuyls, K.: Value-decomposition networks for cooperative multi-agent learning based on team reward. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, pp. 2085–2087 (2018)

  135. Tai, L., Liu, M.: Mobile robots exploration through cnn-based reinforcement learning. Robot. Biomimetics 3(1), 24 (2016)

    Google Scholar 

  136. Tong, W., Hussain, A., Bo, W.X., Maharjan, S.: Artificial intelligence for vehicle-to-everything: A survey. IEEE Access 7, 10,823–10,843 (2019)

    Google Scholar 

  137. Tripathi, N.D., Reed, J.H., Van Landingham, H.F.: Pattern classification based handoff using fuzzy logic and neural nets. 1998 IEEE International Conference on Communications, 1998. ICC 98. Conference Record 3, 1733–1737 (1998). https://doi.org/10.1109/icc.1998.683126

    Article  Google Scholar 

  138. Vermesan, O., Bröring, A., Tragos, E., Serrano, M., Bacciu, D., Chessa, S., Gallicchio, C., Micheli, A., Dragone, M., Saffiotti, A.: Internet of robotic things: converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms, pp. 1–35 (2017)

  139. Vicerra, R.R.P., Dadios, E.P., Bandala, A.A., Lim, L.A.G.: Swarm robot system for underwater communication network. J. Adv. Comput. Intell., 18(5) (2014)

  140. Vicmudo, M.P., Dadios, E.P.: Artificial neural network controller for maintaining underwater swarm robots’ wireless connections. In: 2015 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), pp. 1–6 (2015)

  141. Vincent, P., Rubin, I.: A framework and analysis for cooperative search using uav swarms. In: Proceedings of the 2004 ACM symposium on Applied computing, pp. 79–86 (2004)

  142. Wang, Z., Liu, L., Zhou, M.: Protocols and applications of ad-hoc robot wireless communication networks: An overview. Future 10, 20 (2005)

    Google Scholar 

  143. Wang, Z., Mülling, K., Deisenroth, M.P., Ben Amor, H., Vogt, D., Schölkopf, B., Peters, J.: Probabilistic movement modeling for intention inference in human–robot interaction. Int. J. Robot. Res. 32 (7), 841–858 (2013)

    Google Scholar 

  144. Wen, J., He, L., Zhu, F.J.I.C.M.: . Swarm robotics control and communications: Imminent challenges for next generation smart logistics 56(7), 102–107 (2018)

    Google Scholar 

  145. Whiteson, S.: Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning (2018)

  146. Wu, K., Abolfazli Esfahani, M., Yuan, S., Wang, H.: Learn to steer through deep reinforcement learning. Sensors 18(11), 3650 (2018)

    Google Scholar 

  147. Yang, M., Li, C.z.: Path planing and tracking for multi-robot system based on improved pso algorithm. In: 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), pp. 1667–1670 (2011)

  148. Yordanova, V.: Intelligent adaptive underwater sensor networks (2018)

  149. Yu, W.W.H., Changhua, H.: Resource reservation in wireless networks based on pattern recognition. International Joint Conference on Neural Networks, 2001. Proceedings. IJCNN ’01 3, 2264–2269 (2001). https://doi.org/10.1109/ijcnn.2001.938519

    Article  Google Scholar 

  150. Zaouche, L., Natalizio, E., Bouabdallah, A.: Ettaf: Efficient target tracking and filming with a flying ad hoc network. In: Proceedings of the 1st International Workshop on Experiences with the Design and Implementation of Smart Objects, pp. 49–54 (2015)

  151. Zhang, C., Lesser, V.: Coordinating multi-agent reinforcement learning with limited communication. In: Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems, pp. 1101–1108 (2013)

  152. Zhang, X., Lütteke, F., Ziegler, C., Franke, J.: Self-learning RRT* algorithm for mobile robot motion planning in complex environments, pp. 57–69 (2016)

  153. Zhao, J.: Neural network predictive control for autonomous underwater vehicle with input delay. J. Control Sci. Eng., 2018 (2018)

  154. Zhong, X., Zhou, Y.: A reinforcement learning trained fuzzy neural network controller for maintaining wireless communication connections in multi-robot systems. Mach. Intell. Bio-inspired Comput.: Theory Appl. VIII(9119), 15 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Alsamhi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsamhi, S.H., Ma, O. & Ansari, M.S. Convergence of Machine Learning and Robotics Communication in Collaborative Assembly: Mobility, Connectivity and Future Perspectives. J Intell Robot Syst 98, 541–566 (2020). https://doi.org/10.1007/s10846-019-01079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01079-x

Keywords

Navigation