Skip to main content
Log in

A General Framework for Optimal Tuning of PID-like Controllers for Minimum Jerk Robotic Trajectories

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The minimum jerk principle is commonly used for trajectory planning of robotic manipulators. However, since this principle is stated in terms of the robot’s kinematics, there is no guarantee that the joint controllers will actually track the planned acceleration and jerk profiles because the tuning of the controllers’ gains is decoupled from the trajectory planning. Bearing this in mind, in this paper we introduce a comprehensive framework for optimal estimation of the gains of PID-like controllers for tracking minimum-jerk (MJ) robot trajectories. The proposed methodology relies mainly on a novel variant of error-based performance indices (ISE, ITSE, IAE and ITAE) which are adapted to the tracking of MJ trajectories. Furthermore, the particle swarm optimization (PSO) algorithm is used to search for optimal values for the gains of the controllers of all joints simultaneously. The resulting approach is much simpler than recent developments based on more complex performance indices, in which joint controllers were individually optimized. The proposed approach is general enough to easily encompass the tuning of fractional PID controllers and a comprehensive set of experiments are reported comparing the performances of standard and fractional PID controllers for the task of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghababa, M. P.: Optimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithm. Soft. Comput. 20(10), 4055–4067 (2016)

    Google Scholar 

  2. Ahn, K.K., Truong, D.Q.: Online tuning fuzzy PID controller using robust extended Kalman filter. J. Process Control 19(6), 1011–1023 (2009). Usa derivada do erro. Descreve bem o modelo tipo Mandani e todas suas etapas.

    Google Scholar 

  3. Aloulou, A., Boubaker, O.: Minimum Jerk-Based Control for a Three Dimensional Bipedal Robot. In: International Conference on Intelligent Robotics and Applications (ICIRA’2011), pp. 251–262 (2011)

  4. Angel, L., Viola, J.: Fractional order PID for tracking control of a parallel robotic manipulator type delta. ISA Trans. 79, 172–188 (2018). https://doi.org/10.1016/j.isatra.2018.04.010

    Google Scholar 

  5. Anwaar, H., Yixin, Y., Ijaz, S., Ashraf, M. A., Anwaar, W.: Fractional order based computed torque control of 2-link robotic arm. Adv. Sci. Technol. Res. J. 12(1), 273–284 (2018)

    Google Scholar 

  6. Aström, K. J., Hägglund, T.: Revisiting the Ziegler-Nichols step response method for PID control. J. Process. Control. 14(6), 635–650 (2004)

    Google Scholar 

  7. Bezanson, J., Edelman, A., Karpinski, S., Shah, V. B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Boudjehem, B., Boudjehem, D.: Fractional PID controller design based on minimizing performance indices. IFAC-PapersOnLine 49(9), 164–168 (2016). https://doi.org/10.1016/j.ifacol.2016.07.522

    Google Scholar 

  9. Breteler, M. D. K., Meulenbroek, R. G., Gielen, S. C.: An evaluation of the minimum-jerk and minimum torque-change principles at the path, trajectory, and movement-cost levels. Mot. Control. 6(1), 69–83 (2002)

    Google Scholar 

  10. Chopade, A. S., Khubalkar, S. W., Junghare, A., Aware, M., Das, S.: Design and implementation of digital fractional order PID controller using optimal pole-zero approximation method for magnetic levitation system. IEEE/CAA J. Autom. Sin. 5(5), 977–989 (2018)

    MathSciNet  Google Scholar 

  11. Das, S.: Springer (2008)

  12. Dounis, A.I., Kofinas, P., Alafodimos, C., Tseles, D.: Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system. Renew. Energy 60, 202–214 (2013). Fuzzy PID gain scheduling

    Google Scholar 

  13. Dulǎu, M., Gligor, A., Dulǎu, T. M.: Fractional order controllers versus integer order controllers. Procedia Eng. 181, 538–545 (2017). https://doi.org/10.1016/j.proeng.2017.02.431

    Google Scholar 

  14. Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

  15. Fareh, R., Bettayeb, M., Rahman, M. H.: Control of serial link manipulator using a fractional order controller. Int. Rev. Autom. Control 11(1), 1–6 (2018). https://doi.org/10.15866/ireaco.v11i1.13275

    Google Scholar 

  16. Flash, T., Hogan, N., Richardson, M. J. E.: Optimization Principles in Motor Control. In: M. Arbib (Ed.) the Handbook of Brain Theory and Neural Networks, 2Nd Edn., pp. 827–830. MIT Press (2003)

  17. Flash, T., Meirovitch, Y., Barliya, A.: Models of human movement: Trajectory planning and inverse kinematics studies. Robot. Auton. Syst. 61(4), 330–339 (2013)

    Google Scholar 

  18. Gaing, Z. L.: A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Conver. 19(2), 384–391 (2004). https://doi.org/10.1109/TEC.2003.821821

    Google Scholar 

  19. Grimholt, C., Skogestad, S.: Optimal PID control of double integrating processes. IFAC-PapersOnLine 49 (7), 127–132 (2016). https://doi.org/10.1016/j.ifacol.2016.07.228

    Google Scholar 

  20. Hogan, N.: An organizing principle for a class of voluntary movements. J. Neurosci. 4(11), 2745–2754 (1984)

    Google Scholar 

  21. An, J., Zhao, S. L., Jiang, L., Liu, H.: Solving the time-jerk optimal trajectory planning problem of a robot using augmented Lagrange constrained particle swarm optimization. Math. Probl. Eng. 2017(ID-1921479), 1–10 (2017). https://doi.org/10.1155/2017/1921479

    MathSciNet  Google Scholar 

  22. Kaserer, D., Gattringer, H., Mueller, A.: On-line robot-object synchronization with geometric constraints and limits on velocity, acceleration and jerk. IEEE Robot. Autom. Lett., 1–7 (2018). https://doi.org/10.1109/LRA.2018.2849827

  23. Kathuria, T., Kumar, V., Rana, K. P. S., Azar, A. T.: Control of a Three-Link Manipulator Using Fractional-Order PID Controller. In: Azar, A.T., Radwan, A.G., Vaidyanathan, S. (eds.) Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications, chap. 16, pp 477–510. Academic Press (2018)

  24. Kelly, R., Carelli, R.: A class of nonlinear PD-type controllers for robot manipulators. J. Robot. Syst. 13 (12), 793–802 (1996)

    MATH  Google Scholar 

  25. Kelly, R., Davila, V. S., Perez, J. A. L.: Control of robot manipulators in joint space. Springer Science & Business Media (2006)

  26. Kumar, A., Gaidhane, P. J., Kumar, V.: A nonlinear fractional order PID controller applied to redundant robot manipulator. In: Proceedings of the 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances (CERA’2017), pp. 527–532 (2017)

  27. Kyriakopoulos, K. J., Saridis, G.: Minimum jerk for trajectory planning and control. Robotica 12(2), 109–113 (1994)

    Google Scholar 

  28. Kyriakopoulos, K. J., Saridis, G. N.: Minimum Jerk Trajectory Planning for Robotic Manipulators. In: Cooperative Intelligent Robotics in Space, vol. 1387, pp. 159–165. International Society for Optics and Photonics (1991)

  29. Li, M., Zhou, P., Zhao, Z., Zhang, J.: Two-degree-of-freedom fractional order-PID controllers design for fractional order processes with dead-time. ISA Trans. 61, 147–154 (2016)

    Google Scholar 

  30. Liu, G., Daley, S.: Optimal-tuning PID control for industrial systems. Control. Eng. Pract. 9, 1185–1194 (2001)

    Google Scholar 

  31. Llama, M. A., Kelly, R., Santibañez, V.: A stable motion control system for manipulators via fuzzy self-tuning. Fuzzy Sets Syst. 124(2), 133–154 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Lozano, R., Valera, A., Albertos, P., Arimoto, S., Nakayama, T.: PD control of robot manipulators with joint flexibility, actuators dynamics and friction. Automatica 35(10), 1697–1700 (1999)

    MATH  Google Scholar 

  33. Mattos, C. L. C., Barreto, G. A., Cavalcanti, F. R. P.: An improved hybrid particle swarm optimization algorithm applied to economic modeling of radio resource allocation. Electron. Commer. Res. 14(1), 51–70 (2014)

    Google Scholar 

  34. Meza, J. L., Santibáñez, V., Soto, R., Llama, M. A.: Fuzzy self-tuning PID semiglobal regulator for robot manipulators. IEEE Trans. Ind. Electron. 59(6), 2709–2717 (2012)

    Google Scholar 

  35. O’Brien, R.T. Jr, Howe, J.M.: Optimal PID controller design using standard optimal control techniques. In: Proceedings of the 2008 American Control Conference (ACC’2008), pp. 4733–4738 (2008)

  36. Oliveira, P. W., Barreto, G. A., Thé, G. A. P.: A novel tuning method for PD control of robotic manipulators based on minimum jerk principle. In: Proceedings of the 2018 Latin American Robotic Symposium (LARS’2018), pp. 396–401 (2018)

  37. Padula, F., Ionescu, C., Latronico, N., Paltenghi, M., Visioli, A., Vivacqua, G.: A gain-scheduled PID controller for propofol dosing in anesthesia. In: Proceedings of the 9th IFAC Symposium on Biological and Medical Systems (BMS’2015), pp. 545–550, Berlin, Germany (2015)

  38. Piazzi, A., Visioli, A.: Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans. Ind. Electron. 47(1), 140–149 (2000)

    Google Scholar 

  39. Podlubny, I.: vol. 198, 1st edn. Academic Press (1999)

  40. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. an overview. Swarm Intell. 1(1), 33–57 (2007)

    Google Scholar 

  41. Resende, C.Z., Carelli, R., Sarcinelli-Filho, M.: A nonlinear trajectory tracking controller for mobile robots with velocity limitation via fuzzy gains. Control Eng. Pract. 21(10), 1302–1309 (2013). Usa Takagi-Sugeno para computar os ganhos do controlador PID.

    Google Scholar 

  42. Rohrer, B., Fasoli, S., Krebs, H. I., Hughes, R., Volpe, B., Frontera, W. R., Stein, J., Hogan, N.: Movement smoothness changes during stroke recovery. J. Neurosci. 22(18), 8297–8304 (2002)

    Google Scholar 

  43. Sabir, M. M., Ali, T.: Optimal PID controller design through swarm intelligence algorithms for sun tracking system. Appl. Math. Comput. 274, 690–699 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Sharma, R., Gaur, P., Mittal, A. P.: Performance analysis of two-degree of freedom fractional order PID, controllers for robotic manipulator with payload. ISA Trans. 58, 279–291 (2015). https://doi.org/10.1016/j.isatra.2015.03.013

    Google Scholar 

  45. Skogestad, S.: Tuning for smooth PID control with acceptable disturbance rejection. Ind. Eng. Chem. Res. 45(23), 7817–7822 (2006). https://doi.org/10.1021/ie0602815

    Google Scholar 

  46. Suleiman, W.: On inverse kinematics with inequality constraints: new insights into minimum jerk trajectory generation. Adv. Robot. 30(17–18), 1164–1172 (2016)

    Google Scholar 

  47. Viola, J., Angel, L.: Tracking control for robotic manipulators using fractional order controllers with computed torque control. IEEE Lat. Am. Trans. 16(7), 1884–1891 (2018). https://doi.org/10.1109/TLA.2018.8447353

    Google Scholar 

  48. Visioli, A.: Optimal tuning of PID controllers for integral and unstable processes. Proc.-Control Theory Appl. 148(2), 180–184 (2001)

    Google Scholar 

  49. Visioli, A.: Practical PID Control, 4th edn. Springer (2006)

  50. Visioli, A.: Research trends for PID controllers. Acta Polytechn. 52(5), 133–154 (2012)

    Google Scholar 

  51. Wolpert, D. M., Ghahramani, Z., Jordan, M. I.: Are arm trajectories planned in kinematic or dynamic coordinates? an adaptation study. Exper. Brain Res. 103(3), 460–470 (1995)

    Google Scholar 

  52. Zhuang, M., Atherton, D. P.: Automatic tuning of optimum PID controllers. IEEE Proc. D - Control Theory Appl. 140(3), 216–224 (1993)

    MATH  Google Scholar 

  53. Ziegler, J. G., Nichols, N. B.: Optimum settings for automatic controllers. Trans. ASME 64, 759–768 (1942)

    Google Scholar 

  54. Ziliani, G., Visioli, A., Legnani, G.: Gain scheduling for hybrid force/velocity control in contour tracking task. Int. J. Adv. Robot. Syst. 3(4), 367–374 (2006)

    Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES - Finance Code 001) and by the Brazilian National Research Council (CNPq) via the grant 309451/2015-9. This work was also partially supported by the project INCT (National Institute of Science and Technology) under the grant CNPq 465755/2014-3, FAPESP (São Paulo Research Foundation) 2014/50851-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. P. Thé.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, P.W., Barreto, G.A. & Thé, G.A.P. A General Framework for Optimal Tuning of PID-like Controllers for Minimum Jerk Robotic Trajectories. J Intell Robot Syst 99, 467–486 (2020). https://doi.org/10.1007/s10846-019-01121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01121-y

Keywords

Navigation