Skip to main content

Advertisement

Log in

The Collaboration of Human-Robot in Mixed-Model Four-Sided Assembly Line Balancing Problem

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In the new era, robots play a significant role in assembly lines to assemble different products. In this paper, a combination of humans and robots is used in the mixed-model assembly lines (MMAL) to get better performance from the assembly line. The four-sided assembly line (4-AL) is also considered; that is, in addition to the usual work done on the left and right side, the assembly is also performed on the above and beneath side in some lines. The above-sided tasks are done only by the robot, and it is decided on the other three sides to be done by a robot or a human. The problem’s model has two objectives, minimize the number of mated-station and the cost of utilizing different agents. A small-scale numerical example is solved by the GAMS which indicates the feasibility of the model. An Augmented Multi-Objective particle swarm optimization (AMOPSO) is used to solve the model in large dimensional. AMOPSO has utilized two new methods, local learning strategy and adaptive uniform mutation for the development of the MOPSO algorithm. The Multi-Objective particle swarm optimization (MOPSO) and AMOPSO solutions are compared with each other, and the results show that AMOPSO improves on the responses and has no significant effect on the complexity of solving the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fathi, M., Álvarez, M.J., Rodríguez, V.: A new heuristic-based bi-objective simulated annealing method for U-shaped assembly line balancing. Eur. J. Industrial Eng. 10(2), 145–169 (2016)

    Article  Google Scholar 

  2. Salveson, M.E.: The assembly line balancing problem. J. Industrial Eng. 6(3), 18–25 (1955)

    MathSciNet  Google Scholar 

  3. Boysen, N., Fliedner, M., Scholl, A.: A classification of assembly line balancing problems. Eur. J. Oper. Res. 183(2), 674–693 (2007)

    Article  MATH  Google Scholar 

  4. Baybars, I.: A survey of exact algorithms for the simple assembly line balancing problem. Manag. Sci. 32(8), 909–932 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Becker, C., Scholl, A.: A survey on problems and methods in generalized assembly line balancing. Eur. J. Oper. Res. 168(3), 694–715 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ramezanian, R., Ezzatpanah, A.: Modeling and solving multi-objective mixed-model assembly line balancing and worker assignment problem. Comput. Ind. Eng. 87, 74–80 (2015)

    Article  Google Scholar 

  7. Rabbani, M., Kazemi, S.M., Manavizadeh, N.: Mixed model U-line balancing type-1 problem: a new approach. J. Manuf. Syst. 31(2), 131–138 (2012)

    Article  Google Scholar 

  8. Rabbani, M., Heidari, R., Farrokhi-Asl, H.: A bi-objective mixed-model assembly line sequencing problem considering customer satisfaction and customer buying behaviour. Eng. Optim. 1–20 (2018)

  9. Delorme, X., Dolgui, A., Kovalev, S., Kovalyov, M.Y.: Minimizing the number of workers in a paced mixed-model assembly line. Eur. J. Oper. Res. 272(1), 188–194 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim, D., Moon, D.H., Moon, I.: Balancing a mixed-model assembly line with unskilled temporary workers: algorithm and case study. Assem. Autom. 38(4), 511–523 (2018)

    Article  Google Scholar 

  11. Tang, Q., Li, Z., Zhang, L.: An effective discrete artificial bee colony algorithm with idle time reduction techniques for two-sided assembly line balancing problem of type-II. Comput. Ind. Eng. 97, 146–156 (2016)

    Article  Google Scholar 

  12. Kim, Y.K., Song, W.S., Kim, J.H.: A mathematical model and a genetic algorithm for two-sided assembly line balancing. Comput. Oper. Res. 36(3), 853–865 (2009)

    Article  MATH  Google Scholar 

  13. Make, M.R.A., Rashid, M.F.F.A., Razali, M.M.: A review of two-sided assembly line balancing problem. Int. J. Adv. Manuf. Technol. 89(5–8), 1743–1763 (2017)

    Article  Google Scholar 

  14. Lee, T.O., Kim, Y., Kim, Y.K.: Two-sided assembly line balancing to maximize work relatedness and slackness. Comput. Ind. Eng. 40(3), 273–292 (2001)

    Article  Google Scholar 

  15. Simaria, A.S., Vilarinho, P.M.: 2-ANTBAL: an ant colony optimisation algorithm for balancing two-sided assembly lines. Comput. Ind. Eng. 56(2), 489–506 (2009)

    Article  Google Scholar 

  16. Kim, Y.K., Kim, Y., Kim, Y.J.: Two-sided assembly line balancing: a genetic algorithm approach. Production Planning Control. 11(1), 44–53 (2000)

    Article  Google Scholar 

  17. Ağpak, K., Yegül, M.F., Gökçen, H.: Two-sided U-type assembly line balancing problem. Int. J. Prod. Res. 50(18), 5035–5047 (2012)

    Article  Google Scholar 

  18. Kucukkoc, I., Li, Z., Karaoglan, A.D., Zhang, D.Z.: Balancing of mixed-model two-sided assembly lines with underground workstations: a mathematical model and ant colony optimization algorithm. Int. J. Prod. Econ. 205, 228–243 (2018)

    Article  Google Scholar 

  19. Bogner, K., Pferschy, U., Unterberger, R., Zeiner, H.: Optimised scheduling in human–robot collaboration–a use case in the assembly of printed circuit boards. Int. J. Prod. Res. 56(16), 5522–5540 (2018)

    Article  Google Scholar 

  20. Chen, F., Sekiyama, K., Cannella, F., Fukuda, T.: Optimal subtask allocation for human and robot collaboration within hybrid assembly system. IEEE Trans. Autom. Sci. Eng. 11(4), 1065–1075 (2014)

    Article  Google Scholar 

  21. Tsarouchi, P., Matthaiakis, A.S., Makris, S., Chryssolouris, G.: On a human-robot collaboration in an assembly cell. Int. J. Comput. Integr. Manuf. 30(6), 580–589 (2017)

    Article  Google Scholar 

  22. Boudella, M. E. A., Sahin, E., & Dallery, Y. (2018). Kitting optimisation in just-in-time mixed-model assembly lines: assigning parts to pickers in a hybrid robot–operator kitting system. International Journal of Production Research, 1-20

  23. Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 27(8), 1587–1601 (2018)

    Article  Google Scholar 

  24. Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. 27(11), 2152–2162 (2019)

    Article  Google Scholar 

  25. Xia, X., Liu, J., Hu, Z.: An improved particle swarm optimizer based on tabu detecting and local learning strategy in a shrunk search space. Appl. Soft Comput. 23, 76–90 (2014)

    Article  Google Scholar 

  26. Xia, X., Xie, C., Wei, B., Hu, Z., Wang, B., Jin, C.: Particle swarm optimization using multi-level adaptation and purposeful detection operators. Inf. Sci. 385, 174–195 (2017)

    Article  Google Scholar 

  27. Zhang, Y., Gong, D.W., Sun, X.Y., Guo, Y.N.: A PSO-based multi-objective multi-label feature selection method in classification. Sci. Rep. 7(1), 376 (2017)

    Article  Google Scholar 

  28. Fathi, M., Álvarez, M.J., Rodríguez, V.: A new heuristic-based bi-objective simulated annealing method for U-shaped assembly line balancing. Eur. J Industrial Eng. 10(2), 145–169 (2016)

    Article  Google Scholar 

  29. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  30. Tavana, M., Li, Z., Mobin, M., Komaki, M., Teymourian, E.: Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS. Expert Syst. Appl. 50, 17–39 (2016)

    Article  Google Scholar 

  31. Li, Z., Janardhanan, M.N., Tang, Q., Nielsen, P.: Mathematical model and metaheuristics for simultaneous balancing and sequencing of a robotic mixed-model assembly line. Eng. Optim. 50(5), 877–893 (2018)

    Article  MathSciNet  Google Scholar 

Download references

MSC Code

90B3090C0690C1190C59

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rabbani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabbani, M., Behbahan, S.Z.B. & Farrokhi-Asl, H. The Collaboration of Human-Robot in Mixed-Model Four-Sided Assembly Line Balancing Problem. J Intell Robot Syst 100, 71–81 (2020). https://doi.org/10.1007/s10846-020-01177-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01177-1

Keywords

Navigation