Skip to main content

Advertisement

Log in

Task Location for High Performance Human-Robot Collaboration

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, an approach for the evaluation of human-robot collaboration towards high performance is introduced and implemented. The human arm and the manipulator are modelled as a closed kinematic chain and the proposed task performance criterion is used based on the manipulability index of this chain. The selected task is a straight motion in which the robot end-effector is guided by the human operator via an admittance controller. The best location of the selected task is determined by the maximization of the minimal manipulability along the path. Evaluation criteria for the performance are adopted considering the ergonomics literature. In the experimental set-up with a KUKA LWR manipulator, multiple subjects repeat the specified motion to evaluate the introduced approach experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Meulenbroek, R.G.J., Thomassen, A.J.W.M.: Stroke-direction preferences in drawing and handwriting. Hum. Mov. Sci. 10, 247–270 (1991)

    Article  Google Scholar 

  2. Meulenbroek, R.G.J., Thomassen, A.J.W.M.: Effects of handedness and arm position on stroke-direction preferences in drawing. Psychol. Res. 54(3), 194–201 (1992)

    Article  Google Scholar 

  3. Dounskaia, N., Wang, W.: A preferred pattern of joint coordination during arm movements with redundant degrees of freedom. J. Neurophysiol. 112(5), 1040–1053 (2014)

    Article  Google Scholar 

  4. Dounskaia, N., Goble, J.A.: The role of vision, speed, and attention in overcoming directional biases during arm movements. Exp. Brain Res. 209(2), 299–309 (2011)

    Article  Google Scholar 

  5. Goble, J.A., Zhang, Y., Shimansky, Y., Sharma, S., Dounskaia, N.V.: Directional biases reveal utilization of Arm’s biomechanical properties for optimization of motor behavior. J. Neurophysiol. 98(3), 1240–1252 (2007)

    Article  Google Scholar 

  6. Dounskaia, N., Shimansky, Y.: Strategy of arm movement control is determined by minimization of neural effort for joint coordination. Exp. Brain Res. 234(6), 1335–1350 (2016)

    Article  Google Scholar 

  7. Schmidtke, H., Stier, F.: Der aufbau komplexer bewegungsablaufe aus elementarbewegungen. [The development of complex movement patterns from simple motions]. Forschungsbericht des Landes Nordrhein-Westfalen, vol. 822, pp. 13–32 (1960)

  8. Sanders, M., McCormick, E.: Human factors in engineering and design, 7th edn. McGraw Hill, New York (1993)

    Google Scholar 

  9. Levin, O., Ouamer, M., Steyvers, M., Swinnen, S.P.: Directional tuning effects during cyclical two-joint arm movements in the horizontal plane. Exp. Brain Res. 141(4), 471–484 (2001)

    Article  Google Scholar 

  10. Seow, S.C.: Information theoretic models of HCI: a comparison of the hick-Hyman law and Fitts’ law. Hum. Comput. Interact. 20, 315–352 (2005)

    Article  Google Scholar 

  11. Hancock, P.A., Newell, K.M.: The movement speed-accuracy relationship in space-time. In: Heuer, H., Kleinbeck, U., Schmidt, K. (eds.) Motor behavior, pp. 153–188. Berlin, Springer (1985)

    Chapter  Google Scholar 

  12. Berret, B., Jean, F.: Why Don’t we move slower? The value of time in the neural control of action. J. Neurosci. 36(4), 1056–1070 (2016)

    Article  Google Scholar 

  13. Rigoux, L., Guigon, E.: A model of reward- and effort-based optimal decision making and motor control. PLoS Comput. Biol. 8(10), 1–13 (2012)

    Article  MathSciNet  Google Scholar 

  14. Shadmehr, R., Orban de Xivry, J.J., Xu-Wilson, M., Shih, T.-Y.: Temporal discounting of reward and the cost of time in motor control. J. Neurosci. 30(31), 10507–10516 (2010)

    Article  Google Scholar 

  15. Wang, C., Xiao, Y., Burdet, E., Gordon, J., Schweighofer, N.: The duration of reaching movement is longer than predicted by minimum variance. J. Neurophysiol. 116(5), 2342–2345 (2016)

    Article  Google Scholar 

  16. Patel, S., Sobh, T.: Manipulator performance measures - a comprehensive literature survey. J. Intell. Robot. Syst. Theory Appl. 77(3–4), 547–570 (2014)

    Google Scholar 

  17. Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3–9 (1985)

    Article  MathSciNet  Google Scholar 

  18. Staffetti, E., Bruyninckx, H., De Schutter, J.: Advances in Robot Kinematics: Theory and Applications. Springer (2002)

  19. Salisbury, J.K., Craig, J.J.: Articulated hands: force control and kinematic issues. Int. J. Robot. Res. 1(1), 4–17 (1982)

    Article  Google Scholar 

  20. Bicchi, A., Prattichizzo, D.: Manipulability of cooperating robots with unactuated joints and closed-chain mechanisms. IEEE Trans. Robot. Autom. 16(4), 336–345 (2000)

    Article  Google Scholar 

  21. Wen, J.T.-Y., Wilfinger, L.S.: Kinematic manipulability of general constrained rigid multibody systems. IEEE Trans. Robot. Autom. 15(3), 558–567 (1999)

    Article  Google Scholar 

  22. Gopinathan, S., Mohammadi, P., Steil, J.J.: Improved human-robot interaction : a manipulability based approach. In: ICRA 2018 Workshop on Ergonomic Physical Human-Robot Collaboration (2018)

  23. Tanaka, Y., Yamada, N., Nishikawa, K., Masamori, I., Tsuji, T.: Manipulability analysis of human arm movements during the operation of a variable-impedance controlled robot. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp. 3543–3548 (2005)

  24. Chang, P.H.: A Dexterity Measure for the Kinematic Control of Robot Manipulator with Redundancy (1988)

  25. Forsythe, G.E., Malcolm, M.A., Moler, C.B.: Computer Methods for Mathematical Computations. Prentice Hall, Inc., Englewood Cliffs (1977) XI, 259 S

    MATH  Google Scholar 

  26. Schwartz, E., Manseur, R., Doty, K.: Noncommensurate systems in robotics. Int. J. Robot. Res. 17(2), 86–91 (2002)

    Google Scholar 

  27. Kimt, J., Khosla, P.K.: Dexterity Measures for Design and Control of Manipulators. In: IEEE/RSJ International Workshop on Intelligent Robots and Systems IROS ‘91, no. 91, pp. 758–763 (1991)

  28. Gosselin, C.M.: The optimum design of robotic manipulators using dexterity indices. Robot. Auton. Syst. 9(4), 213–226 (1992)

    Article  Google Scholar 

  29. Ranjbaran, F., Angeles, J., Kecskemethy, A.: On the Kinematic Conditioning of Robotic Manipulators. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, no. April, pp. 3167–3172 (1996)

  30. Jacquier-bret, J., Gorce, P., Rezzoug, N.: The manipulability : a new index for quantifying movement capacities of upper extremity. Ergonomics. 55(1), 69–77 (2012)

    Article  Google Scholar 

  31. Kee, D., Karwowski, W.: The boundaries for joint angles of isocomfort for sitting and standing males based on perceived comfort of static joint postures. Ergonomics. 44(6), 614–648 (2001)

    Article  Google Scholar 

  32. Pheasant, S., Haslegrave, C.M.: Bodyspace: Anthropometry, Ergonomics and the Design of Work, 3rd Editio. CRC Press, London (2005)

    Google Scholar 

  33. Kuka, L.W.R.: User-friendly, sensitive and flexible. from https://www.kukakore.com/wp-content/uploads/2012/07/KUKA_LBR4plus_ENLISCH.pdf

  34. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press (1994)

  35. FLASH, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)

    Article  Google Scholar 

  36. Sharkawy, A.-N., Koustoumpardis, P.N., Aspragathos, N.: Variable admittance control for human-robot collaboration based on online neural network training. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1334–1339 (2018)

  37. Peternel, L., Kim, W., Babic, J., Ajoudani, A.: Towards ergonomie control of human-robot co-manipulation and handover. In: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pp. 55–60 (2017)

Download references

Acknowledgements

The authors would like to thank the volunteers for participating in the experiments. Abdel-Nasser Sharkawy is funded by the “Egyptian Cultural Affairs & Missions Sector” and “Hellenic Ministry of Foreign Affairs Scholarship” for Ph.D. study in Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Nasser Sharkawy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM (MP4 137,237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharkawy, AN., Papakonstantinou, C., Papakostopoulos, V. et al. Task Location for High Performance Human-Robot Collaboration. J Intell Robot Syst 100, 183–202 (2020). https://doi.org/10.1007/s10846-020-01181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01181-5

Keywords