Abstract
It is relevant to develop an adequate control algorithm for quadrotors that guarantees a good compromise robustness/ performance. This compromise should be ensured with or without external disturbances. In this paper, we investigate and apply a revisited formulation of a reference model-based control strategy by introducing a boosting mechanism. This mechanism uses an Extended State-based Observer (ESO) to estimate the uncertainties and variety of disturbances. The estimation is continually updated and rejected from the main control loop. The reinforcement principle is inspired from the popular Active Disturbance Rejection Control (ADRC) technique in order to enhance the robustness ability of a nonlinear reference model-based control strategy (i.e. Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC)). The obtained controller is augmented by an additional input, which is derived via sliding modes framework to handle the estimation errors and ensure asymptotic stability. This combination leads to promising results by improving the nominal control technique. The primary results are shown through numerical simulations and are confirmed, experimentally, with several scenarios.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Jaffar, M.K.M., Velmurugan, M., Mohan, R.: A novel guidance algorithm and comparison of nonlinear control strategies applied to an indoor quadrotor. In: 2019 Fifth Indian Control Conference (ICC), pp. 466–471 (2019)
Zhou, L., Zhang, J., She, H., Jin, H.: Quadrotor UAV flight control via a novel saturation integral backstepping controller. Automatika 60(2), 193–206 (2019). Online. Available: https://doi.org/10.1080/00051144.2019.1610838
Zhao, L., Dai, L., Xia, Y., Li, P.: Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control. Mech. Syst. Signal Processing 129, 531–545 (2019). Online Available: http://www.sciencedirect.com/science/article/pii/S0888327019302791
Zeghlache, S., Saigaa, D., Kara, K., Harrag, A., Bouguerra, A.: Backstepping sliding mode controller improved with fuzzy logic: Application to the quadrotor helicopter. Arc. Control Sci. 22(3), 315–342 (2012). Online Available: https://www.degruyter.com/view/j/acsc.2012.22.issue-3/v10170-011-0027-x/v10170-011-0027-x.xml
Chen, F., Jiang, R., Zhang, K., Jiang, B., Tao, G.: Robust backstepping sliding-Mode control and observer-Based fault estimation for a quadrotor UAV. IEEE Trans. Ind. Electron. 63(8), 5044–5056 (2016)
Zou, Y.: Nonlinear robust adaptive hierarchical sliding mode control approach for quadrotors. Int. J. Robust Nonlinear Control 27(6), 925–941 (2017). Online Available: http://onlinelibrary.wiley.com/doi/10.1002/rnc.3607/abstract
Wang, X., Lin, X., Yu, Y., Wang, Q., Sun, C.: Backstepping control for quadrotor with BP neural network based thrust model. In 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC,), pp. 292–297 (2017)
Miranda-Colorado, R., Aguilar, L.T., Herrero-Brito, J.E.: Reduction of power consumption on quadrotor vehicles via trajectory design and a controller-gains tuning stage. Aero. Sci. Technol. 78, 280–296 (2018). Online Available: http://www.sciencedirect.com/science/article/pii/S1270963817319028
Shi, X., Cheng, Y., Yin, C., Dadras, S., Huang, X.: Design of Fractional-Order Backstepping Sliding Mode Control for Quadrotor UAV. Asian J. Control 21(1), 156–171 (2019). Online Available: https://onlinelibrary.wiley.com/doi/full/10.1002/asjc.1946
Özbek, N.S., Önkol, M., Efe, M.: Feedback control strategies for quadrotor-type aerial robots: a survey. Trans. Inst. Meas. Control 38(5), 529–554 (2016). Online Available: https://doi.org/10.1177/0142331215608427
Lee, H., Kim, H.J.: Trajectory tracking control of multirotors from modelling to experiments: A survey. Int. J. Control, Automation Syst. 15(1), 281–292 (2017). Online Available: https://doi.org/10.1007/s12555-015-0289-3
Mo, H., Farid, G.: Nonlinear and Adaptive Intelligent Control Techniques for Quadrotor UAV – A Survey. Asian J. Control 21(2), 989–1008 (2019). Online Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/asjc.1758
Chenlu, W., Zengqiang, C., Qinglin, S., Qing, Z.: Design of PID and ADRC based quadrotor helicopter control system. In 2016 Chinese Control and Decision Conference (CCDC,), pp. 5860–5865 (2016)
Cai, W., She, J., Wu, M., Ohyama, Y.: Disturbance suppression for quadrotor uav using sliding-mode-observer-based equivalent-input-disturbance approach. ISA Trans. 92, 286–297 (2019). Online Available: http://www.sciencedirect.com/science/article/pii/S0019057819301028
Miranda-Colorado, R.: Finite-time sliding mode controller for perturbed second-order systems. ISA Trans. Online Available: http://www.sciencedirect.com/science/article/pii/S0019057819302587 (2019)
Zhao, L., Dai, L., Xia, Y., Li, P.: Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control. Mech. Syst. Signal Process. 129, 531–545 (2019). Online Available: http://www.sciencedirect.com/science/article/pii/S0888327019302791
Zhao, K., Zhang, J., Ma, D., Xia, Y.: Composite disturbance rejection attitude control for quadrotor with unknown disturbance. IEEE Trans. Ind. Electron. 1–1 (2019)
Zhou, J., Cheng, Y., Du, H., Wu, D., Zhu, M., Lin, X.: Active finite-time disturbance rejection control for attitude tracking of quad-rotor under input saturation. Journal of the Franklin Institute, Online Available: http://www.sciencedirect.com/science/article/pii/S0016003219303497 (2019)
Sierra, J.E., Santos, M.: Wind and payload disturbance rejection control based on adaptive neural estimators: application on quadrotors. Complexity 2019 (2019)
Yuan, Y., Cheng, L., Wang, Z., Sun, C.: Position tracking and attitude control for quadrotors via active disturbance rejection control method. Science China Information Sciences 62(1), 10201 (2018). Online Available: https://doi.org/10.1007/s11432-018-9548-5
Lotufo, M.A., Colangelo, L., Perez-Montenegro, C., Canuto, E., Novara, C.: Uav quadrotor attitude control: An adrc-emc combined approach. Control Eng. Pract. 84, 13–22 (2019). Online Available http://www.sciencedirect.com/science/article/pii/S0967066118305148
Castillo, A., Sanz, R., Garcia, P., Qiu, W., Wang, H., Xu, C.: Disturbance observer-based quadrotor attitude tracking control for aggressive maneuvers. Control Eng. Pract. 82, 14–23 (2019). Online Available: http://www.sciencedirect.com/science/article/pii/S096706611830563X
Kotyczka, P., Koch, G., Pellegrini, E., Lohmann, B.: 8th IFAC Symposium on Nonlinear Control SystemsTransparent Parametrization of Nonlinear IDA-PBC for a Hydraulic Actuator. IFAC Proceedings Volumes 43(14), 1122–1127 (2010)
Neves, L.C., Paim, G.V., Queinnec, I., Moreno, U.F., De Pieri, E.R.: Passivity and Power Based Control of a Robot with Parallel Architecture*. IFAC Proceedings Volumes 44(1), 14608–14613 (2011). Online Available: http://www.sciencedirect.com/science/article/pii/S1474667016459768
Ryalat, M., Laila, D.S.: A simplified IDA-PBC design for underactuated mechanical systems with applications. Europ. J. Control 27, 1–16 (2016). Online Available: http://linkinghub.elsevier.com/retrieve/pii/S0947358015001296
Gandarilla, I., Santibañez, V., Sandoval, J.: Control of a self-balancing robot with two degrees of freedom via IDA-PBC. ISA Trans. 88, 102–112 (2019). Online Available: http://www.sciencedirect.com/science/article/pii/S0019057818305093
Bouzid, Y., Siguerdidjane, H., bestaoui, Y., Zareb, M.: Energy Based 3D Autopilot for VTOL UAV Under Guidance &; Navigation Constraints. J. Intell. Robot Syst. 1–22 (2016)
Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Energy based 3d trajectory tracking control of quadrotors with model-free based on-line disturbance compensation. Chinese J. Aeronaut. 31(7), 1568–1578 (2018). Online Available: http://www.sciencedirect.com/science/article/pii/S1000936118301675
Romero, J.G., Donaire, A., Ortega, R.: Robust energy shaping control of mechanical systems. Syst. Control Letters 62(9), 770–780 (2013)
Ryalat, M., Laila, D.S.: A robust ida-pbc approach for handling uncertainties in underactuated mechanical systems. IEEE Trans. Autom. Control 63(10), 3495–3502 (2018)
Donaire, A., Junco, S.: On the addition of integral action to port-controlled hamiltonian systems. Automatica 45(8), 1910–1916 (2009)
Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Generic dynamic modeling for multirotor VTOL UAVs and robust Sliding Mode based Model-Free, Control for 3d navigation. In 2018 International Conference on Unmanned Aircraft Systems (ICUAS), 970–979 (2018)
Ortega, R., García-Canseco, E.: Interconnection and damping assignment passivity-Based control: a survey. Eur. J. Control. 10(5), 432–450 (2004)
Byrnes, C.I., Isidori, A., Willems, J.C.: Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Autom. Control 36(11), 1228–1240 (1991)
Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002)
Gómez-Estern, F., Van der Schaft, A.J.: Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems. Europ. J. Control 10(5), 451–468 (2004). Online Available: http://www.sciencedirect.com/science/article/pii/S0947358004703921
Huang, C., Li, J., Mu, S., Yan, H.: Linear active disturbance rejection control approach for load frequency control of two-area interconnected power system. Trans. Inst. of Meas. Control 41(6), 1562–1570 (2019). Online Available: https://doi.org/10.1177/0142331217701539
Lamraoui, H.C, Qidan, Z.: Speed tracking control of unicycle type mobile robot based on LADRC. 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), 200–204 (2017)
Pérez-Alcocer, R., Moreno-Valenzuela, J., Miranda-Colorado, R.: A robust approach for trajectory tracking control of a quadrotor with experimental validation. ISA Trans. 65(Supplement C), 262–274 (2016). Online Available: http://www.sciencedirect.com/science/article/pii/S0019057816301598
Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: 3d trajectory tracking control of quadrotor UAV with on-line disturbance compensation. In 2017 IEEE Conference on Control Technology and Applications (CCTA,), 2082–2087 (2017)
Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Nonlinear internal model control applied to VTOL multi-rotors UAV. Mechatronics 47, 49–66 (2017). Online Available: http://www.sciencedirect.com/science/article/pii/S0957415817301046
Bristeau, P.-J., Callou, F., Vissière, D., Petit, N.: The Navigation and Control technology inside the AR.Drone micro UAV. IFAC Proceed. Volumes 44(1), 1477–1484 (2011). Online Available: http://www.sciencedirect.com/science/article/pii/S1474667016438188
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Bouzid, Y., Zareb, M., Siguerdidjane, H. et al. Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation. J Intell Robot Syst 100, 597–614 (2020). https://doi.org/10.1007/s10846-020-01182-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-020-01182-4