Skip to main content
Log in

Aerial Load Transportation with Multiple Quadrotors Based on a Kinematic Controller and a Neural SMC Dynamic Compensation

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A novel formation control to transport a cable-suspended payload with two quadrotors is presented. The control structure is based on a layered scheme combining a kinematic null-space based controller and a neural sliding mode controller. The null-space controller is designed to generate velocity references to the quadrotors in the formation, whereas the neural sliding mode controller receives such reference velocities and performs a dynamic compensation for possible parametric uncertainties as well as for the dynamic perturbations caused by the load attached to the quadrotors. The stability of the closed-loop control system thus implemented is also proven with basis on the theory of Lyapunov. Very detailed dynamic models for the quadrotors, the flexible cables, and the payload are included in a highly realistic scenario. To close the work, numerical simulations are presented, whose results demonstrate a good performance of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hayat, S., Yanmaz, E., Muzaffar, R.: Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Commun. Surv. Tutor. 18(4), 2624–2661 (2016)

    Article  Google Scholar 

  2. Huang, M., Xian, B., Diao, C., Yang, K., Feng, Y.: Adaptive tracking control of underactuated quadrotor unmanned aerial vehicles via backstepping. In: Proceedings of the 2010 American Control Conference, pp 2076–2081. IEEE (2010)

  3. Pizetta, I.H.B., Brandão, A.S., Sarcinelli-Filho, M.: Modelling and control of a pvtol quadrotor carrying a suspended load. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp 444–450. IEEE (2015)

  4. Shakhatreh, H., Sawalmeh, A.H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N.S., Khreishah, A., Guizani, M: Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access 7, 48572–48634 (2019)

    Article  Google Scholar 

  5. Villa, D.K., Brandão, A.S., Sarcinelli-Filho, M.: A survey on load transportation using multirotor uavs. Journal of Intelligent & Robotic Systems, 1–30

  6. Braun, J., Gertz, S.D., Furer, A., Bader, T., Frenkel, H., Chen, J., Glassberg, E., Nachman, D.: The promising future of drones in prehospital medical care and its application to battlefield medicine. J Trauma Acute Care Surgery 87(1S), S28–S34 (2019)

    Article  Google Scholar 

  7. Sung, I., Nielsen, P.: Zoning a service area of unmanned aerial vehicles for package delivery services. Journal of Intelligent & Robotic Systems, 1–13 (2019)

  8. Foehn, P., Falanga, D., Kuppuswamy, N., Tedrake, R., Scaramuzza, D: Fast trajectory optimization for agile quadrotor maneuvers with a cable-suspended payload. Robotics: Science and Systems, 1–10 (2017)

  9. Dinh, T.D., Pirmagomedov, R., Pham, V.D., Ahmed, A.A., Kirichek, R., Glushakov, R., Vladyko, A.: Unmanned aerial system–assisted wilderness search and rescue mission. Int. J. Distrib. Sensor Netw. 15(6), 1550147719850719 (2019)

    Article  Google Scholar 

  10. Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M.W., Willmann, J.S., Gramazio, F., Kohler, M., D’Andrea, R.: The flight assembled architecture installation: Cooperative construction with flying machines. IEEE Control. Syst. Mag. 34(4), 46–64 (2014)

    Article  MathSciNet  Google Scholar 

  11. Sayed Soliman, A.M., Cinar Cagan, S., Baris Buldum, B.: The design of a rotary-wing unmanned aerial vehicles-payload drop mechanism for fire-fighting services using fire-extinguishing balls. SN Appl. Sci. 1(10), 1259 (2019)

    Article  Google Scholar 

  12. Rao Mogili, U., Deepak, B.B.V.L.: Review on application of drone systems in precision agriculture. Procedia Comput. Sci. 133, 502–509 (2018)

    Article  Google Scholar 

  13. Kotaru, P., Wu, G., Sreenath, K.: Differential-flatness and control of quadrotor (s) with a payload suspended through flexible cable (s). In: 2018 Indian Control Conference (ICC), pp 352–357. IEEE (2018)

  14. Cruz, P.J., Fierro, R.: Cable-suspended load lifting by a quadrotor uav: Hybrid model, trajectory generation, and control. Auton. Robot. 41(8), 1629–1643 (2017)

    Article  Google Scholar 

  15. Alothman, Y., Guo, M., Gu, D.: Using iterative lqr to control two quadrotors transporting a cable-suspended load. IFAC-PapersOnLine 50(1), 4324–4329 (2017)

    Article  Google Scholar 

  16. Guerrero-Sánchez, M. E., Mercado-Ravell, D.A., Lozano, R., García-Beltrán, C.D.: Swing-attenuation for a quadrotor transporting a cable-suspended payload. ISA Trans. 68, 433–449 (2017)

    Article  Google Scholar 

  17. Sun, K., Qiu, J., Karimi, H.R., Gao, H.: A novel finite-time control for nonstrict feedback saturated nonlinear systems with tracking error constraint. IEEE Transactions on Systems, Man and Cybernetics: Systems (2019)

  18. Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. 27(11), 2152–2162 (2019)

    Article  Google Scholar 

  19. Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 27(8), 1587–1601 (2018)

    Article  Google Scholar 

  20. Meissen, C., Klausen, K., Arcak, M., Fossen, T.I., Packard, A.: Passivity-based formation control for uavs with a suspended load. IFAC-PapersOnLine 50(1), 13150–13155 (2017)

    Article  Google Scholar 

  21. Estevez, J., Graña, M., Lopez-Guede, J.M.: Online fuzzy modulated adaptive PD control for cooperative aerial transportation of deformable linear objects. Integr. Comput.-Aided Eng. 24(1), 41–55 (2017)

    Article  Google Scholar 

  22. Babaie, R., Ehyaie, A.F.: Robust optimal motion planning approach to cooperative grasping and transporting using multiple UAVs based on SDRE. Trans. Inst. Meas. Control., 1–18 (2016)

  23. Dai, S., Lee, T., Bernstein, D.S.: Adaptive control of a quadrotor uav transporting a cable-suspended load with unknown mass. In: Proc. of 53rd IEEE Conference on Decision and Control, Los Angeles, CA USA (2014)

  24. Lee, T.: Geometric control of quadrotor uavs transporting a cable-suspended rigid body. IEEE Trans. Control Syst. Technol. 26(1), 255–264 (2017)

    Article  Google Scholar 

  25. Santos, M.C.P., Rosales, C.D., Sarcinelli-Filho, M., Carelli, R.: A novel null-space-based uav trajectory tracking controller with collision avoidance. IEEE/ASME Trans. Mechatron. 22(6), 2543–2553 (2017)

    Article  Google Scholar 

  26. Martins, F.N., Celeste, W.C., Carelli, R., Sarcinelli-Filho, M., Bastos-Filho, T.F.: An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control. Eng. Pract. 16(11), 1354–1363 (2008)

    Article  Google Scholar 

  27. Rossomando, F., Soria, C., Carelli, R.: Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties. Eng. Appl. Artif. Intel. 26(10), 2251–2259 (2013)

    Article  Google Scholar 

  28. Gimenez, J., Gandolfo, D., Salinas, L., Rosales, C., Carelli, R.: Multi-objective control for cooperative payload transport with rotorcraft uavs. ISA Trans. 80, 491–502 (2018)

    Article  Google Scholar 

  29. Salinas, L.R., Gimenez, J., Rosales, C., Gandolfo, D.C.: Null-space-based path-following control for cooperative payload transport using multiple rotorcraft uavs. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp 631–638. IEEE (2018)

  30. Powers, C., Mellinger, D., Kumar, V.: Quadrotor kinematics and dynamics. Handbook of Unmanned Aerial Vehicles, 307–328 (2015)

  31. Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The grasp multiple micro-uav testbed. IEEE Robot. Autom. Mag. 17(3), 56–65 (2010)

    Article  Google Scholar 

  32. Santana, L.V., Brandao, A.S., Sarcinelli-Filho, M., Carelli, R.: A trajectory tracking and 3d positioning controller for the ar.drone quadrotor. In: International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, pp. 756–767 (2014)

  33. Santos, M.C., Santana, L.V., Brandão, A.S., Sarcinelli-Filho, M., Carelli, R.: Indoor low-cost localization system for controlling aerial robots. Control. Eng. Pract. 61, 93–111 (2017)

    Article  Google Scholar 

  34. Rosales, C., Soria, C., Carelli, R., Rossomando, F.: Adaptive dynamic control of a quadrotor for trajectory tracking. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 547–553. IEEE (2017)

  35. Rossomando, F., Soria, C., Carelli, R.: Neural network-based compensation control of mobile robots with partially known structure. IET Control Theory Appl. 6(12), 1851–1860 (2012)

    Article  MathSciNet  Google Scholar 

  36. Slotine, J.-J.E., Li, W., et al.: Applied Nonlinear Control, vol. 199. Prentice hall, Englewood Cliffs (1991)

    Google Scholar 

  37. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  38. Vt, S.E., Shin, Y.C.: Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems. IEEE Trans. Neural Netw. 5(4), 594–603 (1994)

    Article  Google Scholar 

  39. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems (MCSS) 2(4), 303–314 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the Secretary of State for Science, Technology and Innovation of the Government of San Juan (Secretaría de Estado de Ciencia, Tecnología e Innovación del Gobierno de San Juan), CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) and the National University of San Juan for the financial support granted to this work. Dr. Sarcinelli-Filho also thanks CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico, a Brazilian agency that supports scientific and technological development, as well as FAPES – Fundação de Amparo à Pesquisa e Inovação do Espírito Santo, an agency of the State of Espírito Santo, Brazil, that supports scientific and technological development – for financing his cooperation with the Argentinean colleagues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Rossomando.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossomando, F., Rosales, C., Gimenez, J. et al. Aerial Load Transportation with Multiple Quadrotors Based on a Kinematic Controller and a Neural SMC Dynamic Compensation. J Intell Robot Syst 100, 519–530 (2020). https://doi.org/10.1007/s10846-020-01195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01195-z

Keywords

Navigation