Abstract
Qualitative modeling allows autonomous agents to learn comprehensible control models, formulated in a way that is close to human intuition. By abstracting away certain numerical information, qualitative models can provide better insights into operating principles of a dynamic system in comparison to traditional numerical models. We show that qualitative models, learned from numerical traces, contain enough information to allow motion planning and path following. We demonstrate our methods on the task of flying a quadcopter. A qualitative control model is learned through motor babbling. Training is significantly faster than training times reported in papers using reinforcement learning with similar quadcopter experiments. A qualitative collision-free trajectory is computed by means of qualitative simulation, and executed reactively while dynamically adapting to numerical characteristics of the system. Experiments have been conducted and assessed in the V-REP robotic simulator.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bratko, I.: An assessment of machine learning methods for robotic discovery. J. Comput. Inf. Technol. - CIT 16(4), 247–254 (2008). https://doi.org/10.2498/cit.1001392
Bratko, I.: Autonomous discovery of abstract concepts by a robot. In: Adaptive and Natural Computing Algorithms, pp. 1–11. Springer Lecture Notes. https://doi.org/10.1007/978-3-642-20282-7_1 (2011)
De Kleer, J.: Multiple representations of knowledge in a mechanics problem solver. In: Inproceedings of the International Joint Conference on Artificial Intelligence, pp. 299–304. https://doi.org/10.1016/b978-1-4832-1447-4.50009-2 (1977)
De Kleer, J., Brown, J. S.: A qualitative physics confluences. Artif. Intell. 24(1-3), 7–83 (1984)
Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor uav using neural networks. IEEE Trans. Neural Netw. 21(1), 50–66 (2010). https://doi.org/10.1109/tnn.2009.2034145
Domingos, D., Camargo, G., Gomide, F.: Autonomous fuzzy control and navigation of quadcopters. FAC-PapersOnLine 49(5), 73–78. https://doi.org/10.1016/j.ifacol.2016.07.092. 4th IFAC Conference on Intelligent Control and Automation SciencesICONS 2016 (2016)
Došilović, F. K., Brčić, M., Hlupić, N.: Explainable Artificial Intelligence: a Survey. In: 2018 41St International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 210–215 (2018)
Forbus, K. D.: Qualitative process theory. Artif. Intell. 24(1-3), 85–168 (1984). https://doi.org/10.21236/ada465743
Forbus, K. D.: Introducing actions into qualitative simulation. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’89, pp. 1273–1278. Morgan Kaufmann Publishers Inc (1989)
Forbus, K. D.: Qualitative Representations: How People Reason and Learn about the Continuous World, 1st edn. MIT Press. https://doi.org/10.7551/mitpress/11578.001.0001 (2019)
Gandhi, D., Pinto, L., Gupta, A.: Learning to Fly by Crashing. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1344–1352. https://doi.org/10.1109/iros.2017.8206247 (2017)
Garcia, A., Mittal, S., Kiewra, E., Ghose, K.: A Convolutional Neural Network Vision System Approach to Indoor Autonomous Quadrotor Navigation. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1344–1352. https://doi.org/10.1109/icuas.2019.8798183 (2019)
Goebel, R., Chander, A., Holzinger, K., Lecue, F., Akata, Z., Stumpf, S., Kieseberg, P., Holzinger, A.: Explainable AI: The new 42? In: Machine Learning and Knowledge Extraction. CD-MAKE 2018. Lecture Notes in Computer Science, vol. 11015, pp. 295–303. Springer, Cham . https://doi.org/10.1007/978-3-319-99740-7_21 (2018)
Hoffmann, G. M., Huang, H., Wasl, S. L., Tomlin, E. C. J.: Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment. In: In Proc. of the AIAA Guidance, Navigation, and Control Conference. https://doi.org/10.2514/6.2007-6461 (2007)
Hogge, J. C.: Compiling plan operators from domains expressed in qualitative process theory. In: Proceedings of the Sixth National Conference on Artificial Intelligence - Volume 1, AAAI’87, pp. 229–233. AAAI Press (1987)
Hwangbo, J., Sa, I., Siegwart, R., Hutter, M.: Control of a quadrotor with reinforcement learning. IEEE Robot. Autom. Lett. 2(4), 2096–2103 (2017). https://doi.org/10.1109/lra.2017.2720851
Koch, W., Mancuso, R., West, R., Bestavros, A.: Reinforcement learning for UAV attitude control. ACM Transactions on Cyber-Physical Systems, 3. https://doi.org/10.1145/3301273 (2018)
Košmerlj, A., Bratko, I., žabkar, J.: Embodied concept discovery through qualitative aaction models. International Journal of Uncertainty. Fuzz. Knowl.-Based Syst. 19(03), 453–475 (2011). https://doi.org/10.1142/s0218488511007088
Kouris, A., Bouganis, C.: Learning to Fly by Myself: a Self-Supervised Cnn-Based Approach for Autonomous Navigation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). https://doi.org/10.1109/iros.2018.8594204 (2018)
Kuipers, B.: Qualitative simulation. Artif. Intell. 29(3), 289–338 (1986). https://doi.org/10.1016/b978-1-4832-1447-4.50018-3
Kuipers, B.: Qualitative reasoning: Modeling and simulation with incomplete knowledge. MIT Press, Cambridge. https://doi.org/10.1063/1.4823391 (1994)
Kunze, L., Beetz, M.: Envisioning the qualitative effects of robot manipulation actions using simulation-based projections. Artif. Intell. 247, 352–380 (2017). https://doi.org/10.1016/j.artint.2014.12.004
Leban, G., žabkar, J., Bratko, I.: An experiment in robot discovery with ILP. In: Proceedings of the 18th International Conference on Inductive Logic Programming, pp. 77–90. Springer, Berlin. https://doi.org/10.1007/978-3-540-85928-4_10 (2008)
Loquercio, A., Maqueda, A. I., del Blanco, C. R., Scaramuzza, D.: Dronet: Learning to fly by driving. IEEE Robot. Autom. Lett. 3(2), 1088–1095 (2018). https://doi.org/10.1109/lra.2018.2795643
Michie, D.: Machine learning in the next five years. In: Proceedings of the 3rd European Conference on European Working Session on Learning, EWSL’88, pp. 107–122 (1988)
Mo, H., Farid, G.: Nonlinear and adaptive intelligent control techniques for quadrotor uav – a survey. Asian J. Control 21(2), 989–1008 (2019). https://doi.org/10.1002/asjc.1758
Mugan, J., Kuipers, B.: Autonomous learning of high-level states and actions in continuous environments. IEEE Trans. Auton. Ment. Dev. 4(1), 70–86 (2012). https://doi.org/10.1109/tamd.2011.2160943
Quinlan, J. R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986). https://doi.org/10.1007/bf00116251
Raffo, G. V., Ortega, M., Rubio, F.: Backstepping/nonlinear H\(\infty \) control for path tracking of a quadrotor unmanned aerial vehicle. In: Proceedings of the American Control Conference, pp. 3356–3361. https://doi.org/10.1109/ACC.2008.4587010 (2008)
Rohmer, E., Singh, S. P. N., Freese, M.: V-REP: a Versatile and Scalable Robot Simulation Framework. In: Proc. of the International Conference on Intelligent Robots and Systems (IROS), pp. 1321–1326. https://doi.org/10.1109/iros.2013.6696520 (2013)
Rubí, B., Pérez, R., Morcego, B.: A survey of path following control strategies for uavs focused on quadrotors. Journal of Intelligent & Robotic Systems. https://doi.org/10.1007/s10846-019-01085-z(2019)
Sammut, C., Yik, T.F.: Multistrategy Learning for Robot Behaviours, pp. 457–476. Springer, Berlin. https://doi.org/10.1007/978-3-642-05177-7_23 (2010)
Sanchez-Lopez, J., Wang, M., Olivares-Mendez, M., Molina, M., Voos, H.: A real-time 3d path planning solution for collision-free navigation of multirotor aerial robots in dynamic environments. J. Intell. Robot. Syst. 93, 33–53 (2018). https://doi.org/10.1007/s10846-018-0809-5
Sun, K., Liu, L., Qiu, J., Feng, G.: Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems. IEEE Transactions on Fuzzy Systems. pp. 1–1. https://doi.org/10.1109/TFUZZ.2020.2965890 (2020)
Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 27(8), 1587–1601 (2019). https://doi.org/10.1109/TFUZZ.2018.2883374
Sun, K., Qiu, J., Karimi, H. R., Gao, H.: A novel finite-time control for nonstrict feedback saturated nonlinear systems with tracking error constraint. IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–12. https://doi.org/10.1109/TSMC.2019.2958072 (2019)
Troha, M., Bratko, I.: Qualitative learning of object pushing by a robot. In: 25th International Workshop on Qualitative Reasoning, pp. 175–180. Barcelona, Spain (2011)
Šoberl, D., Bratko, I.: Reactive motion planning with qualitative constraints. In: Advances in Artificial Intelligence: From Theory to Practice, Part I, pp. 41–50. Springer International Publishing. https://doi.org/10.1007/978-3-319-60042-0_5 (2017)
Šoberl, D., žabkar, J., Bratko, I.: Qualitative planning of object pushing by a robot. In: Lecture Notes in Computer Science, vol. 9384, pp. 410–419. Springer, Berlin. https://doi.org/10.1007/978-3-319-25252-0_44 (2015)
Šuc, D., Bratko, I: Induction of qualitative trees. In: Machine Learning: ECML 2001: 12th European Conference on Machine Learning Freiburg, Germany, 2001 Proceedings, pp. 442–453. Springer, Berlin. https://doi.org/10.1007/3-540-44795-4_38 (2001)
Šuc, D., Bratko, I., Sammut, C.: Learning to fly simple and robust. In: Machine Learning: ECML 2004, vol. 3201, pp. 407–418. Springer, Berlin. https://doi.org/10.1007/978-3-540-30115-8_38 (2004)
žabkar, J., Bratko, I., Demšar, J.: Learning qualitative models through partial derivatives by padé. In: Proceedings of the 21st Annual Workshop on Qualitative Reasoning, pp. 193–202 (2007)
žabkar, J., Možina, M., Bratko, I., Demšar, J.: Learning qualitative models from numerical data. Artif. Intell. 175(9-10), 1604–1619 (2011). https://doi.org/10.1016/j.artint.2011.02.004
Waslander, S. L., Hoffmann, G. M., Tomlin, C. J.: Multi-Agent Quadrotor Testbed Control Design: Integral Sliding Mode Vs. Reinforcement Learning. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3712–3717. https://doi.org/10.1109/iros.2005.1545025 (2005)
Wellman, M. P.: Qualitative Simulation with Multivariate Constraints. In: Second International Conference on Principles of Knowledge Representation and Reasoning, pp. 547–557. Morgan Kaufmann (1991)
Wiley, T., Sammut, C., Bratko, I.: Qualitative planning with quantitative constraints for online learning of robotic behaviours. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 2578–2584 (2014)
Wiley, T., Sammut, C., Bratko, I.: A planning and learning hierarchy using qualitative reasoning for the on-line acquisition of robotic behaviors. Adv. Cogn. Syst. 4, 93–112 (2016)
Acknowledgements
This work was partially funded by Slovenian Research Agency (ARRS) as part of research programme AI and Intelligent Systems.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Šoberl, D., Bratko, I. & Žabkar, J. Learning to Control a Quadcopter Qualitatively. J Intell Robot Syst 100, 1097–1110 (2020). https://doi.org/10.1007/s10846-020-01228-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-020-01228-7
Keywords
Profiles
- Domen Šoberl View author profile