Skip to main content
Log in

Feedback Linearization with Zero Dynamics Stabilization for Quadrotor Control

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A control solution for an Unmanned Aerial Vehicle encapsulating a nonlinear inner-loop based on the application of feedback linearization to the attitude and altitude dynamics is proposed in this paper. Linear quadratic controllers with integrative action are implemented not only to the resulting inner-loop chain of integrators, but also to the outer-loop, that controls the horizontal movement and, consequently, stabilizes the zero-dynamics. The required full state-feedback relies on measurements from motion sensors and on-flight estimates provided by Kalman filters and a nonlinear attitude filter. In simulation, the capacity of trajectory tracking and withstanding significant deviations of the mass and inertia values of the proposed control structure are evaluated while considering saturation and noisy measurements. The simulations results were experimentally validated using a commercially available drone. The modeling and control system architecture are validated by the experimental results. Additionally, a comparison with the results achieved with a linear control solution developed in a previous work is drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parrot ar.drone 2.0 elite edition (2018). https://www.parrot.com/global/drones/parrot-ardrone-20-elite-edition#parrot-ardrone-20-elite-edition

  2. Aboudonia, A., El-Badawy, A., Rashad, R.: Disturbance observer-based feedback linearization control of an unmanned quadrotor helicopter. Proc. Inst. Mech. Eng. Part I J. Sys. Control Eng. 230(9), 877–891 (2016)

    Google Scholar 

  3. Bonna, R., Camino, J.: Trajectory tracking control of a quadrotor using feedback linearization (2015)

  4. Bouabdallah, S., Siegwart, R.: Backstepping and sliding-mode techniques applied to an indoor micro quadrotor (2005)

  5. Bryson, A.E., Ho, Y.C.: Applied Optimal Control Optimization, Estimation, and Control. Hemisphere Publishing Corporation, Bristol (1986)

    Google Scholar 

  6. Casau, P., Sanfelice, R.G., Cunha, R., Cabecinhas, D., Silvestre, C.: Robust global trajectory tracking for a class of underactuated vehicles. Automatica 58, 90–98 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cowling, I.D., Yakimenko, O.A., Whidborne, J.F., Cooke, A.K.: A prototype of an autonomous controller for a quadrotor uav. In: Proceedings of the European Control Conference (ECC). pp. 4001–4008 (2007)

  8. Das, A., Subbarao, K., Lewis, F.: Dynamic inversion of quadrotor with zero-dynamics stabilization. In: 2008 IEEE International Conference on Control Applications (2008)

  9. Dydek, Z.T., Annaswamy, A.M., Lavretsky, E.: Adaptive control of quadrotor uavs: a design trade study with flight evaluations. IEEE Trans. Control Syst. Technol. 21(4), 1400–1406 (2013)

    Article  Google Scholar 

  10. Freddi, A., Lanzon, A., Longhi, S.: A feedback linearization approach to fault tolerance in quadrotor vehicles. IFAC Proceedings 44(1), 5413–5418 (2011)

    Google Scholar 

  11. Gillula, J.H., Huang, H., Vitus, M.P., Tomlin, C.J.: Design of guaranteed safe maneuvers using reachable sets: Autonomous quadrotor aerobatics in theory and practice. In: 2010 IEEE International Conference on Robotics and Automation. pp. 1649–1654 (2010)

  12. Henson, M., Seborg, D.E.: Nonlinear Process Control. Prentice Hall PTR, Englewood Cliffs (1997)

    Google Scholar 

  13. Hoffmann, G., Huang, H., Waslander, S., Tomlin, C.: Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment. AIAA Guidance, Navigation and Control Conference and Exhibit (2007)

  14. Isidori, A.: Nonlinear Control Systems. Springer, Verlag (1995)

    Book  Google Scholar 

  15. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  16. Lee, D.: Ar.drone 2.0 support from embedded coder (2016). http://www.mathworks.com/hardware-support/ar-drone.html

  17. Leishman, J.G.: Principles of Helicopter Aerodynamics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  18. Li, J., Li, Y.: Dynamic analysis and pid control for a quadrotor. In: 2011 IEEE International Conference on Mechatronics and Automation. p. 573–578 (2011)

  19. Madani, T., Benallegue, A.: Backstepping control for a quadrotor helicopter. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 3255–3260 (2006)

  20. Madeiras, J., Cardeira, C., Oliveira, P.: Complementary filter vision-aided for attitude and position estimation: design, analysis and experimental validation. In: Proceedings of the 21st IFAC Symposium on Automatic Control in Aerospace (2019)

  21. Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)

    Article  Google Scholar 

  22. Martins, L.: Linear and nonlinear control of uavs: design and experimental validation. Master’s Thesis, Instituto Superior Técnico, Lisbon, Portugal (2019)

  23. Martins, L., Cardeira, C., Oliveira, P.: Linear quadratic regulator for trajectory tracking of a quadrotor. IFAC-PapersOnLine 52(12), 176–181 (2019). 21st IFAC Symposium on Automatic Control in Aerospace ACA 2019

    Article  Google Scholar 

  24. Mayhew, C.G., Sanfelice, R.G., Teel, A.R.: Quaternion-based hybrid control for robust global attitude tracking. IEEE Trans. Autom. Control 56(11), 2555–2566 (2011)

    Article  MathSciNet  Google Scholar 

  25. Nagaty, A., Saeedi, S., Thibault, C., Seto, M., Li, H.: Control and navigation framework for quadrotor helicopters. J Int. Robot Sys 70(1-4), 1–12 (2013)

    Article  Google Scholar 

  26. Oriolo, G., Sciavicco, L., Siciliano, B., Villani, L.: Robotics: Modelling, Planning and Control. Springer, Berlin (2010)

    Google Scholar 

  27. Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear \({\mathscr{H}}_{\infty }\) control structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010)

    Article  MathSciNet  Google Scholar 

  28. Smeur, E., Höppener, D., De wagter, C.: Prioritized Control Allocation for Quadrotors Subject to Saturation (2017)

  29. Sontag, E.: Further facts about input to state stabilization. IEEE Trans. Automat Contr 35, 473–476 (1990)

    Article  MathSciNet  Google Scholar 

  30. Stengel, R.: Optimal Control and Estimation. Dover Publications, New York (1994)

    Google Scholar 

  31. Vachtsevanos, G., Valavanis, K.: Handbook of Unmanned Aerial Vehicles. 93–103. https://doi.org/10.1007/978-90-481-9707-1_96 (2015)

  32. Valenti, M., Bethke, B., Fiore, G., How, J., Feron, E.: Indoor multi-vehicle flight testbed for fault detection, isolation, and recovery. AIAA Guidance, Navigation, and Control Conference and Exhibit (2006)

  33. Vallejo-Alarcon, M.A.: Robust backstepping control for highly demanding quadrotor flight. J. Contr. Eng. Appl. Info 22(1), 51–62 (2020)

    Google Scholar 

  34. Wang, J., Bierling, T., Achtelik, M., Hocht, L., Holzapfel, F., Zhao, W., Go, T.H.: Attitude free position control of a quadcopter using dynamic inversion. Infotech@Aerospace (2011)

  35. Xia, D., Cheng, L., Yao, Y.: A robust inner and outer loop control method for trajectory tracking of a quadrotor. Sensors 17(9), 2147 (2017)

    Article  Google Scholar 

  36. Younes, Y., Drak, A., Noura, H., Rabhi, A., El hajjaji, A.: Robust model-free control applied to a quadrotor uav. J. Intell. Robot. Syst., 84 (2016)

Download references

Acknowledgments

This work was supported by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) through Institute for Mechanical Engineering (IDMEC), under Associated Laboratory for Energy, Transports and Aeronautics (LAETA) [UIDB/50022/2020] projects. L. Martins holds a scholarship from the FCT project DECENTER [LISBOA-01-0145-FEDER-029605], funded by the Lisboa 2020 and PIDDAC programs

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Martins.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, L., Cardeira, C. & Oliveira, P. Feedback Linearization with Zero Dynamics Stabilization for Quadrotor Control. J Intell Robot Syst 101, 7 (2021). https://doi.org/10.1007/s10846-020-01265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-020-01265-2

Keywords

Navigation