Skip to main content
Log in

2DxoPod - A Modular Robot for Mimicking Locomotion in Vertebrates

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The domain of robotics is successfully automating majority of terrestrial applications with significant breakthroughs in research involving wheeled robots. Robots equipped with biomimetic capabilities can aid effectively in many scenarios where conventional infrastructure such as roads, flat terrains and wheeled robots are not available. 2DxoPod is a modular robot developed with the aim improve the mobility in robots in challenging scenarios by taking advantage of its features tuned to enhance biomimetic capabilities. A novel joint mechanism present at the center of the robotic design is capable of mimicking movements in vertebrates and providing two degrees of freedom that are orthogonal and coincident to each other. The paper describes characteristics of the 2DxoPod module and it’s advantages with respect to modular robots developed in the field of robotics. Simulations are performed on navigation capabilities of the snake and quadruped robotic coordinated structures assembled using 2DxoPod robotic modules using centralized pattern generator and the results of the same are also provided in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sanfilippo, F., Hatledal, L. I., Zhang, H., Fago, M., Pettersen, K. Y.: Controlling Kuka Industrial Robots: Flexible Communication Interface JOpenshowvar. IEEE Robot. Autom. Mag. 22, 96–109 (2015)

    Article  Google Scholar 

  2. Calderon, C. A. A., Norouzi, A., Qi, Z.: Humanoid social robots: a design for interaction. 13th Int. Conf. Control Autom. Robot. Vis., 871–876 (2014)

  3. Pratt, G. a.: Steps Being Taken at MIT’s Leg Laboratory in Advancing Human-Like Walking in Robots. IEEE Robot. Autom. Mag. 16–19 (2000)

  4. Wooden, D., Malchano, M., Blankespoor, K., Howardy, A., Rizzi, A. A., Raibert, M.: Autonomous navigation for BigDog. Proc. - IEEE Int. Conf. Robot. Autom., 4736–4741 (2010)

  5. Yim, M., Duff, D.: Modular robots. IEEE Spectrum 39, 30–34 (2002)

    Article  Google Scholar 

  6. Yim, M., White, P., Park, M., Sastra, J.: Modular self-reconfigurable robots. Encycl. Complex. Syst., 19–33 (2009)

  7. Ahmadzadeh H., Masehian E., Asadpour M.: Modular Robotic Systems: Characteristics and Applications. J. Intell. Robot. Syst. 81, 317–357. [yang paper] (2016)

  8. Chennareddy, S. S. R., Agrawal, A., Karuppiah, A.: Modular Self-Reconfigurable robotic systems: a survey on hardware architectures. J. Robot. 2017, 1–19 (2017)

    Google Scholar 

  9. Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S.: A 3-D self-reconfigurable structure. Proc. IEEE Int. Conf. Robot. Autom., 432–439 (1998)

  10. Rus, D., Vona, M.: A physical implementation of the self-reconfiguring crystalline robot. In: Proceedings IEEE International Conference on Robotics and Automation. Symposia Proceedings, pp. 1726–1733 (2000)

  11. An, B. K.: EM-Cube: Cube-shaped, self-reconfigurable robots sliding on structure surfaces. Proceedings - IEEE International Conference on Robotics and Automation, pp. 3149–3155 (2008)

  12. Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. Proceedings of IEEE International Conference on Robotics and Automation, pp. 441–448 (1994)

  13. Romanishin, J. W., Gilpin, K., Claici, S., Rus, D., M-Blocks, 3D: Self-reconfiguring robots capable of locomotion via pivoting in three dimensions. IEEE International Conference on Robotics and Automation, pp. 1925–1932 (2015)

  14. Ünsal, C., Kiliççöte, H., Khosla, P. K.: Modular self-reconfigurable bipartite robotic system: Implementation and motion planning, Auton. Robots. 10, 23–40 (2001)

    Article  Google Scholar 

  15. Rubenstein, M., Payne, K., Will, P., Shen Wei-Min, S.: Docking among independent and autonomous CONRO self-reconfigurable robots. IEEE International Conference on Robotics and Automation, pp. 2877–2882 (2004)

  16. Baca, J., Hossain, S. G. M., Dasgupta, P., Nelson, C. A., Dutta, A.: ModRED: Hardware design and reconfiguration planning for a high dexterity modular self-reconfigurable robot for extra-terrestrial exploration. Rob. Auton. Syst. 62, 1002–1015 (2014)

    Article  Google Scholar 

  17. Moeckel, R., Jaquier, C., Drapel, K., Dittrich, E., Upegui, A., Jan Ijspeert, A.: Exploring adaptive locomotion with YaMoR, a novel autonomous modular robot with Bluetooth interface. Ind. Robot. Int. J. 33, 285–290 (2006)

    Article  Google Scholar 

  18. Zhu, Y., Jin, H., Zhang, X., Yin, J., Liu, P., Zhao, J.: A Multi-sensory Autonomous Docking Approach for a Self-reconfigurable Robot without Mechanical Guidance. Int. J. Adv. Robot. Syst., 11 (2014)

  19. Qiao, G., Song, G., Zhang, J., Sun, H., Wang, W., Song, A.: Design of transmote: a modular self-reconfigurable robot with versatile transformation capabilities. IEEE Int. Conf. Robot. Biomimetics (ROBIO), pp. 1331–1336 (2012)

  20. Schultz, U. P., Bordignon, M., Stoy, K.: Robust and reversible self-reconfiguration. IEEE/RSJ Int. Conf. Intell. Robot. Syst. 5287–5294 (2009)

  21. Liedke, J., Matthias, R., Winkler, L., Worn, H.: The Collective Self-reconfigurable Modular Organism (coSMO). IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing, pp. 1–6 (2013)

  22. Parrott, C.: A hybrid and extendable self-reconfigurable modular robotic system. http://etheses.whiterose.ac.uk/id/eprint/16759 (2016)

  23. Parrott, C., Dodd, T. J., Gross, R.: HiGen: A high-speed genderless mechanical connection mechanism with single-sided disconnect for self-reconfigurable modular robots. 2014 IEEE/RSJ Int. Conf. Intell. Robot. Syst., 3926–3932 (2014)

  24. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7, 431–441 (2002)

    Article  Google Scholar 

  25. Kurokawa, H., Kamimura, A., Yoshida, E., Tomita, K., Kokaji, S., Murata, S., II, M -T R A N: Metamorphosis from a four-legged walker to a caterpillar. Proc. Int. Conf. Intell. Robot. Syst. (IROS), 2454–2459 (2003)

  26. Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., Murata, S.: Distributed Self-Reconfiguration of m-TRAN III modular robotic system. Int. J. Rob. Res. 27, 373–386 (2008)

    Article  Google Scholar 

  27. Davey, J., Kwok, N., Yim, M.: Emulating self-reconfigurable robots - design of the SMORES system. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4464–4469. IEEE (2012)

  28. Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., Taylor, C. J.: Towards Robotic Self-Reassembly after Explosion. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2767–2772 (2007)

  29. Li, Y., Zhang, H., Chen, S.: A Four-Legged Robot Based on GZ-I Modules. In: IEEE International Conference on Robotics and Biomimetics, pp. 921–926 (2008)

  30. Ryland, G. G., Cheng, H. H.: Design of iMobot, an Intelligent Reconfigurable Mobile Robot with Novel Locomotion. In: IEEE International Conference on Robotics and Automation, pp. 60–65 (2010)

  31. Wang, W., Yu, W., Zhang, H.: JL-2: A mobile multi-robot system with docking and manipulating capabilities. Int. J. Adv. Robot. Syst. 7, 9–18 (2010)

    Article  Google Scholar 

  32. Wolfe, K. C., Moses, M. S., Kutzer, M. D. M., Chirikjian, G. S., 3Express, M: A low-cost independently-mobile reconfigurable modular robot. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 2704–2710 (2012)

  33. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7, 431–441 (2002)

    Article  Google Scholar 

  34. Kurokawa, H., Kamimura, A, Yoshida, E., Tomita, K., Kokaji, S., Murata, S.: M-TRAN II: Metamorphosis from a four-legged walker to a caterpillar. In: Proc. of the Int. Conf. on Intelligent Robots and Systems (IROS), pp. 2454–2459

  35. Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., Murata, S.: Distributed Self-Reconfiguration of m-TRAN III modular robotic system. Int. J. Rob. Res. 27, 373–386 (2008)

    Article  Google Scholar 

  36. Fang, Z., Fu, Y., Chai, T.: A Low-Cost Modular Robot for Research and Education of Control Systems, Mechatronics and Robotics. In: 4Th IEEE Conference on Industrial Electronics and Applications, pp. 2828–2833 (2009)

  37. Yim, M., Duff, D. G., Roufas, K. D.: Polybot: a Modular Reconfigurable Robot. In: IEEE International Conference on Robotics and Automation. Symposia Proceedings, pp. 514–520. IEEE (2000)

  38. Sproewitz, A., Laprade, P., Bonardi, S., Mayer, M., Moeckel, R., Mudry, P.A., Ijspeert, A.J.: Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules. IEEE/RSJ 2010 Int. Conf. Intell. Robot. Syst., pp. 1126–1132 (2010)

  39. Salemi, B., Moll, M., Shen, W. M.: SUPERBOT: a Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic System. In: IEEE International Conference on Intelligent Robots and Systems, pp. 3636–3641 (2006)

  40. Zhang, Y., Song, G., Liu, S., Qiao, G., Zhang, J., Sun, H.: A Modular Self-Reconfigurable Robot with Enhanced Locomotion Performances: Design, modeling, simulations, and experiments. J. Intell. Robot. Syst. Theory Appl. 81, 377–393 (2016)

    Article  Google Scholar 

  41. Tang, S. T. S., Zhu, Y. Z. Y., Zhao, J. Z. J., Cui, X. C. X.: The UBot Modules for Self-Reconfigurable Robot. In: ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, pp. 529–535 (2009)

  42. Tosun, T., Davey, J., Liu, C., Yim, M.: Design and Characterization of the EP-Face Connector. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 45–51 (2016)

  43. Neubert, J., Lipson, H.: Soldercubes: a self-soldering self-reconfiguring modular robot system. Auton. Robots. 40, 139–158 (2016)

    Article  Google Scholar 

  44. Sutyasadi, P., Parnichkun, M.: Gait tracking control of quadruped robot using differential evolution based structure specified mixed sensitivity. Robust Con. J. Control Sci. Eng. 2016, 1–18 (2016)

    Article  Google Scholar 

  45. Atique, M. M. U., Sarker, M. R. I., Ahad, M. A. R.: Development of an 8DOF quadruped robot and implementation of Inverse Kinematics using Denavit-Hartenberg convention. Heliyon. 4, e01053 (2018)

    Article  Google Scholar 

  46. Wang, Z., Gao, Q., Zhao, H.: CPG-Inspired Locomotion Control for a Snake Robot Basing on Nonlinear Oscillators. J. Intell. Robot. Syst. 85, 209–227 (2017)

    Article  Google Scholar 

  47. Dholakiya, D., Bhattacharya, S., Gunalan, A., Singla, A., Bhatnagar, S., Amrutur, B., Ghosal, A., Kolathaya, S.: Design, Development and Experimental Realization of a Quadrupedal Research Platform: Stoch, 5th International Conference on Control, Automation and Robotics (ICCAR), pp. 229–234 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankhar Reddy CH..

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CH., S.S.R., Abhimanyu, Godiyal, R. et al. 2DxoPod - A Modular Robot for Mimicking Locomotion in Vertebrates. J Intell Robot Syst 101, 23 (2021). https://doi.org/10.1007/s10846-020-01270-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-020-01270-5

Keywords