Skip to main content

Advertisement

Log in

Generosity-Based Schedule Deconfliction in Communication-Limited Environments

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

We present an algorithmic approach to task deconfliction for teams of autonomous agents in communication-limited environments when the teams produce schedules with strong cross-schedule dependencies without the knowledge of the existence of other teams attempting to prosecute the same task set. Once agents discover others are attempting to prosecute the same task, they deconflict the task by trading assigned tasks. The method to determine the agents and tasks to trade in an efficient manner we term the Generous Agent Algorithm (GAA). Through formal analysis and simulation we show that teams utilizing the GAA can observe significant reductions in schedule end times and mission fuel requirements. We compare the GAA’s performance with a greedy deconfliction algorithm and a centralized scheduling algorithm to show that the GAA improves performance in situations when the number of agents is large within limited-communication environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ye, D., Zhang, M., Vasilakos, A.V.: A survey of self-organization mechanisms in multiagent systems. IEEE Trans. Syst. Man. Cybern. Syst. 47(3), 441–461 (2017). https://doi.org/10.1109/TSMC.2015.2504350

    Article  Google Scholar 

  2. Arkin, R.C.: Behavior-based robotics, 1st edn. The MIT Press (1998)

  3. Korsah, G.A.: Exploring bounded optimal coordination for heterogeneous teams with cross-schedule dependencies. Ph.D. Thesis, Carnegie Mellon University (2012)

  4. Brucker, P., Knust, S.: Complex scheduling, 2nd edn. Springer (2012)

  5. Kutzke, D.T., Bays, M.J.: Conflict resolution for heterogeneous teams in communication-limited environments: A generous agent approach. In: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), pp. 535–540. https://doi.org/10.1109/COASE.2019.8843021 (2019)

  6. Vinogradov, E, Minucci, F, Pollin, S: Wireless communication for safe uavs: From long-range deconfliction to short-range collision avoidance. IEEE Veh. Technol. Mag. 15(2), 88–95 (2020). https://doi.org/10.1109/MVT.2020.2980014

    Article  Google Scholar 

  7. Nysetvold, T.B., Salmon, J.L.: Deconfliction in high-density unmanned aerial vehicle systems. J. Air Transp. 27(2), 61–69 (2019). https://doi.org/10.2514/1.D0119

    Article  Google Scholar 

  8. Courchelle, V., Soler, M., Gonzlez-Arribas, D., Delahaye, D.: A simulated annealing approach to 3d strategic aircraft deconfliction based on en-route speed changes under wind and temperature uncertainties. Transp. Res. Part C: Emerg. Technol. 103, 194–210 (2019). https://doi.org/10.1016/j.trc.2019.03.024

    Article  Google Scholar 

  9. Cafieri, S., D’Ambrosio, C.: Feasibility pump for aircraft deconfliction with speed regulation. J. Glob. Optim. 71(3), 501–515 (2018). https://doi.org/10.1007/s10898-017-0560-7

    Article  MathSciNet  Google Scholar 

  10. Celi, F., Wang, L., Pallottino, L., Egerstedt, M.: Deconfliction of motion paths with traffic inspired rules. IEEE Robot. Autom. Lett. 4(2), 2227–2234 (2019). https://doi.org/10.1109/LRA.2019.2899932

    Article  Google Scholar 

  11. Sharkawy, A.N., Koustoumpardis, P.N., Aspragathos, N.: Human-robot collisions detection for safe human-robot interaction using one multi-inputoutput neural network. Soft. Comput. 24, 6687–6719 (2020). https://doi.org/10.1007/s00500-019-04306-7

    Article  Google Scholar 

  12. Bays, M.J., Wettergren, T.A.: A solution to the service agent transport problem. In: Proceedings to the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6443–6450. IEEE. https://doi.org/10.1109/IROS.2015.7354298 (2015)

  13. Mendez, C.A., Cerdà, J.: An milp framework for batch reactive scheduling with limited discrete resources. Comput. Chem. Eng. 28(6), 1059–1068 (2004). https://doi.org/10.1016/j.compchemeng.2003.09.008. FOCAPO 2003 Special issue

    Article  Google Scholar 

  14. Choi, H.-L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Robot. 25(4), 912–926 (2009). https://doi.org/10.1109/TRO.2009.2022423

    Article  Google Scholar 

  15. Whitten, A.K., Choi, H.L., Johnson, L.B., How, J.P.: Decentralized task allocation with coupled constraints in complex missions. In: Proceedings of the 2011 American Control Conference, pp. 1642–1649 (2011)

  16. Confessore, G., Giordani, S., Rismondo, S.: A market-based multi-agent system model for decentralized multi-project scheduling. Ann. Oper. Res. 150, 115–135 (2007). https://doi.org/10.1007/s10479-006-0158-9

    Article  MathSciNet  Google Scholar 

  17. Bredström, D., R̈onnqvist, M.: Combined vehicle routing and scheduling with temporal precedence and synchronization constraints. Eur. J. Oper. Res. 191(1), 19–31 (2008). https://doi.org/10.1016/j.ejor.2007.07.033

    Article  Google Scholar 

  18. Bays, M.J., Wettergren, T.A.: Partially-decoupled service agent-transport agent task allocation and scheduling. J. Intell. Robot. Syst. 94, 423–437 (2018). https://doi.org/10.1007/s10846-018-0825-5

    Article  Google Scholar 

  19. Schwarzrock, J., Zacarias, I., Bazzan, A.L.C., deAraujoFernandes, R.Q., Moreira, L.H., deFreitas, E.P.: Solving task allocation problem in multi unmanned aerial vehicles systems using swarm intelligence. Eng. Appl. Artif. Intel. 72, 10–20 (2018). https://doi.org/10.1016/j.engappai.2018.03.008

    Article  Google Scholar 

  20. Reinl, C., von Stryk, O.: Optimal control of multi-vehicle-systems under communication constraints using mixed-integer linear programming. In: International Conference on Robot Communication and Coordination (2007)

  21. Amorim, J.C., Alves, V., de Freitas, E.P.: Assessing a swarm-GAP based solution for the task allocation problem in dynamic scenarios. Expert Syst. Appl. 152, 113437 (2020). https://doi.org/10.1016/j.eswa.2020.113437

    Article  Google Scholar 

  22. Wu, W., Bhattacharya, S., Prorok, A.: Multi-robot path deconfliction through prioritization by path prospects. In: Proceedings to the 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9809–9815 (2020)

  23. Smith, R.G.: The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Trans. Comput. C-29(12) (1980)

  24. Dahl, T.S., Matarić, M, Sukhatme, G.S.: Multi-robot task allocation through vacancy chain scheduling. Robot. Auton. Syst. 57(6), 674–687 (2009). https://doi.org/10.1016/j.robot.2008.12.001

    Article  Google Scholar 

  25. Chase, I.D., Weissburg, M., Dewitt, T.H.: The vacancy chain process: A new mechanism of resource distribution in animals with application to hermit crabs. Animal Behav. 36(5), 1265–1274 (1988)

    Article  Google Scholar 

  26. Gerkey, B.P., Matarić, MJ: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004). https://doi.org/10.1177/0278364904045564

    Article  Google Scholar 

  27. Bays, M.J., Wettergren, T.A.: Service agent-transport agent task planning incorporating robust scheduling techniques. Robot. Auton. Syst. 89, 15–26 (2017). https://doi.org/10.1016/j.robot.2016.11.022

    Article  Google Scholar 

  28. Parker, L.E.: Alliance: An architecture for fault tolerant multi-robot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

    Article  Google Scholar 

  29. Gerkey, B.P., Matarić, M.J.: Multi-robot task allocation: Analyzing the complexity and optimality of key architectures. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation, pp. 3862–3868. IEEE (2003)

  30. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans. Inf. Theory 52(6), 2508–2530 (2006). https://doi.org/10.1109/TIT.2006.874516

    Article  MathSciNet  Google Scholar 

  31. Silvestre, D., Hespanha, J.P., Silvestre, C.: Broadcast and gossip stochastic average consensus algorithms in directed topologies. IEEE Trans. Control Netw. Syst. 6(2), 474–486 (2018). https://doi.org/10.1109/TCNS.2018.2839341

    Article  MathSciNet  Google Scholar 

  32. Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: a survey. IEEE Wirel. Commun. 11(6), 6–28 (2004). https://doi.org/10.1109/MWC.2004.1368893

    Article  Google Scholar 

  33. Dimakis, A.G., Kar, S., Moura, J.M.F., Rabbat, M.G., Scaglione, A.: Gossip algorithms for distributed signal processing. Proc. IEEE 98(11), 1847–1864 (2010). https://doi.org/10.1109/JPROC.2010.2052531

    Article  Google Scholar 

  34. The Mathworks, Inc., Natick, Massachusetts. MATLAB version 9.7.0.1296695 (R2019b) (2019)

  35. IBM Corporation, Incline Village, NV, USA: IBM ILOG CPLEX 12.8.0 User’s Manual (2018)

  36. Kahraman, C., Engin, O., Kaya, A., Ozturk, R.E.: Multiprocessor task scheduling in multistage hybrid flow-shops: A parallel greedy algorithm approach. Appl. Soft Comput. 10(4), 1293–1300 (2010). https://doi.org/10.1016/j.asoc.2010.03.008

    Article  Google Scholar 

  37. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 3rd edn. The MIT Press (2009)

  38. Jose, K., Pratihar, D.K.: Task allocation and collision-free path planning of centralized multi-robot systems for industrial plant inspection using heuristic methods. Robot. Auton. Syst. 80, 34–42 (2016). https://doi.org/10.1016/j.robot.2016.02.003

    Article  Google Scholar 

  39. Lu, W., Youling, C.: Routing optimization of regional logistics vehicles based on distribution information matching. In: Proceedings of the 2019 International Conference on Robotics, Intelligent Control, and Artificial Intelligence, pp. 56–60. ACM (2019)

  40. Hameed, I.A.: Intelligent coverage path planning for agricultural robots and autonomous machines on three-dimensional terrain. J. Intell. Robot. Syst. 74(3-4), 965–983 (2014). https://doi.org/10.1007/s10846-013-9834-6

    Article  Google Scholar 

  41. Vergnano, A., Thorstensson, C., Lennartson, B., Falkman, P., Pellicciari, M., Leali, F., Biller, S.: Modeling and optimization of energy and consumption in cooperative multi-robot systems. IEEE Trans. Autom. Sci. Eng. 9(2), 423–428 (2012). https://doi.org/10.1109/TASE.2011.2182509

    Article  Google Scholar 

Download references

Acknowledgements

This work is indebted to the feedback of Mr. Benjamin Hartman for proofreading our technical material, as well as providing editorial comments. We are also grateful to our sponsor the Office of Naval Research (ONR) and the continued funding and support we have received through ONR Code 33.

Funding

This work has been supported by the Office of Naval Research (ONR)

Author information

Authors and Affiliations

Authors

Contributions

Demetrious T. Kutzke: Conceptualization, Methodology, Investigation, Software, Writing - Original Draft, Writing - Review & Editing Richard D. Tatum: Methodology, Investigation, Writing - Original Draft Matthew J. Bays: Software, Writing - Review & Editing

Corresponding author

Correspondence to Demetrious T. Kutzke.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Code availability

Custom code not available to the general public

This paper was presented in part at the IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, British Columbia, Canada, August 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutzke, D.T., Tatum, R.D. & Bays, M.J. Generosity-Based Schedule Deconfliction in Communication-Limited Environments. J Intell Robot Syst 101, 20 (2021). https://doi.org/10.1007/s10846-020-01294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-020-01294-x

Keywords

Navigation