Skip to main content
Log in

Design of an Active and Passive Control System for a Knee Exoskeleton with Variable Stiffness Based on a Shape Memory Alloy

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Exoskeletons have been widely used in the field of human body function enhancement, and the application scenarios of exoskeletons have gradually diversified. The current application environment is characterized by high mobility, long periodicity, and uncertainty. To adapt to these characteristics, in the present study, an active and passive control system for a variable-stiffness knee exoskeleton based on a shape memory alloy (SMA) is developed. To enhance the mobility of the knee exoskeleton, the stiffness adjustment function is realized by SMA wires. To adapt to the long periodicity of application scenarios, the passive control mode is constructed, during which the exoskeleton drives human legs. Moreover, to address the uncertainty of the application scenarios, the active control mode is constructed, during which the exoskeleton follows the human leg movement when the wearer is in an irregular movement state. A gait recognition system is used to switch between the active and the passive control modes. Based on the prototype, a comprehensive experimental verification of the control system was carried out. The experimental results show that the constructed control system can realize the active and passive control function. In addition, the variable-stiffness function of the knee exoskeleton has the effect of reducing the driving error in scenarios with high mobility requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data, models generated or used during the study are available from the corresponding author by request.

References

  1. Moltedo, M., Cavallo, G., Bacek, T., Lataire, J., Vanderborght, B., Lefeber, D., Rodriguez-Guerrero, C.: Variable stiffness ankle actuator for use in robotic-assisted walking: Control strategy and experimental characterization. Mech. Mach. Theory. 134, 406–624 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.01.017

    Article  Google Scholar 

  2. Mancisidor, A., Zubizarreta, A., Cabanes, I., Bengoa, P., Jung, J.H.: Kinematical and dynamical modeling of a multipurpose upper limbs rehabilitation robot. Robot. Comput.-Integr. Manuf. 49, 374–387 (2018). https://doi.org/10.1016/j.rcim.2017.08.013

    Article  Google Scholar 

  3. Garcia, E., Sater, J.M., Main, J.: Exoskeletons for human performance augmentation (EHPA): a program summary. J. Robot. Soc. 20, 822–826 (2002). https://doi.org/10.7210/jrsj.20.822

    Article  Google Scholar 

  4. Zoss, A.B., Kazerooni, H., Chu, A.: Biomechanical Design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE-ASME Trans. Mechatron. 11(2), 128–138 (2006). https://doi.org/10.1109/TMECH.2006.871087

    Article  Google Scholar 

  5. Kovalsky, C.: Raytheon unveils lighter, faster, stronger second-generation exoskeleton robotic suit. Raytheon http://raytheon.mediaroom.com/index. php?item= 1652(2010). Accessed 27 September 2010

  6. Walsh, C.J., Endo, K., Herr, H.: A quasi-passive leg exoskeleton for load-carrying augmentation. Int. J. Humanoid Robot. 4(3), 487–506 (2007). https://doi.org/10.1142/S0219843607001126

  7. Heo, P., Gu, G., Lee, S.J., Rhee, K., Kim, J.: Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int. J. Precis. Eng. Manuf. 13(5), 807–824 (2012). https://doi.org/10.1007/s12541-012-0107-2

    Article  Google Scholar 

  8. Kim, S., Lee, J., Bae, J.: Analysis of finger muscular forces using a wearable hand exoskeleton system. J. Bionic Eng. 14(4), 680–691 (2017). https://doi.org/10.1016/S1672-6529(16)60434-1

    Article  Google Scholar 

  9. Smyrnaiou, G.P., Papoutsidakis, M., Xatzopoulos, A., Tseles, D.: Control of SIMO Systems in Simulation: The Challenge of the Multiple Axes Actuating Pneumatic Arm. Int. J. Comput. Appl. Technol. 168, 0975–8887 (2017). https://doi.org/10.5120/ijca2017914499

  10. Ghassemi, M., Ranganathan, R., Barry, A., Triandafilou, K., Kamper, D.: Introduction of an EMG-controlled game to facilitate hand rehabilitation after stroke. In: Proc. Int. Conf. on NeuroRehabilitation, pp. 451–455 (2016). https://doi.org/10.1007/978-3-319-46669-9_75

    Chapter  Google Scholar 

  11. Fu, Y., Wang, P., Wang, S., Liu, H., Zhang, F.: Design and development of a portable exoskeleton based CPM machine for rehabilitation of hand injuries. In: Proc. IEEE Int. Conf. on Robotics and Biomimetics (ROBIO), pp. 1476–1481 (2007). https://doi.org/10.1109/ROBIO.2007.4522382

    Chapter  Google Scholar 

  12. Schabowsky, C.N., Godfrey, S.B., Holley, R.J., Lum, P.S.: Development and pilot testing of HEXORR: hand exoskeleton rehabilitation robot. J. NeuroEng. Rehabil. 7, 1–16 (2010). https://doi.org/10.1186/1743-0003-7-36

    Article  Google Scholar 

  13. Brahmi, B., Saad, M., Luna, C.O., Archambault, P.S., Rahman, M.H.: Passive and active rehabilitation control of human upper-limb exoskeleton robot with dynamic uncertainties. Robotica. 36(11), 1757–1779(2018). https://doi.org/10.1017/S0263574718000 723

  14. Su, C., Chai, A., Tu, X., Zhou, H., He, J.: Passive and active control strategies of a leg rehabilitation exoskeleton powered by pneumatic artificial muscles. Int. J. Pattern Recognit. Artif. Intell. 31(10), 1759021 (2017). https://doi.org/10.1142/S0218001417590212

    Article  Google Scholar 

  15. Wang, S., Li, J.T., Zheng, R.Y.: Active and Passive Control Algorithm for an Exoskeleton with Bowden Cable Transmission for Hand Rehabilitation. In: Proc. Int. Conf. on Robotics and Biomimetics (ROBIO), pp. 75–79 (2010). https://doi.org/10.1109/ROBIO.2010.5723306

    Chapter  Google Scholar 

  16. Zhang, F.H., Lin, L.G., Yang, L., Fu, Y.L.: Design of an Active and Passive Control System of Hand Exoskeleton for Rehabilitation. Appl. Sci.-Basel. 9(11), UNSP 2291 (2019). https://doi.org/10.3390/app9112291

    Article  Google Scholar 

  17. Liu, L., Leonhardt, S., Misgeld, B.J.: Design and control of a mechanical rotary variable impedance actuator. Mechatronics. 39, 226–236 (2016). https://doi.org/10.1016/j.mechatronics.2016.06.002

    Article  Google Scholar 

  18. Quy, H.V., Aryananda, L., Sheikh, F.I., Casanova, F., Pfeifer, R.: A novel mechanism for varying stiffness via changing transmission angle. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 5076–5081 (2011). https://doi.org/10.1109/ICRA.2011.5980097

    Chapter  Google Scholar 

  19. Jafari, A., Tsagarakis, N.G., Vanderborght, B., Caldwell, D.G.: A novel actuator with adjustable stiffness (AwAS). In: Proc. IEEE Int. Conf. on Intelligent Robots and Systems, pp. 4201–4206 (2010). https://doi.org/10.1109/IROS.2010.5648902

    Chapter  Google Scholar 

  20. Jafari, A., Tsagarakis, N.G., Caldwell, D.G.: AwAS-II: a new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio. In: Proc. IEEE Int. Conf. on Robotics and Automation(ICRA), pp. 4638–4643 (2011). https://doi.org/10.1109/ICRA.2011.5979994

    Chapter  Google Scholar 

  21. Catalano, M.G., Grioli, G., Garabini, M., Bonomo, F., Mancini, M., Tsagarakis, N., Bicchi, A.: VSA-CubeBot: a modular variable stiffness platform for multiple degrees of freedom robots. In: Proc. IEEE Int. Conf. on Robotics and Automation(ICRA), pp. 5090–5095 (2011). https://doi.org/10.1109/ICRA.2011.5980457

    Chapter  Google Scholar 

  22. Li, J.F., Yin, H.B., Tan, Y.G.: A novel variable stiffness soft finger actuated by shape memory alloy. Int. J. Appl. Electromagn. Mech. 53(4), 727–733 (2017). https://doi.org/10.3233/jae-160091

    Article  Google Scholar 

  23. Yin, H.B., Kong, C., Li, J.F., Yang, G.L.: Modeling of grasping force for a soft robotic gripper with variable stiffness. Mech. Mach. Theory. 128, 254–274 (2018). https://doi.org/10.1016/j.mechmachtheory.2018.05.005

    Article  Google Scholar 

  24. Yuen, M.C., Bilodeau, R.A., Kramer, R.K.: Active Variable Stiffness Fibers for Multifunctional Robotic Fabrics. IEEE Robot. Autom. Mag. Lett. 1(2), 708–715 (2016). https://doi.org/10.1109/LRA.2016.2519609

    Article  Google Scholar 

  25. Li, J.F., Zhong, G.L., Yin, H.B., He, M.C., Tan, Y.G., Li, Z.: Position control of a robot finger with variable stiffness actuated by shape memory alloy. In: Proc. IEEE Int. Conf. on Robotics and Automation(ICRA), pp. 4941–4946 (2017). https://doi.org/10.1109/ICRA.2017.7989573

    Chapter  Google Scholar 

  26. Brinson, L.C., Lammering, R.: Finite-element analysis of the behavior of shape memory alloy and their application. Int. J. Solids Struct. 30(23), 3261–3280 (1993). https://doi.org/10.1016/0020-7683(93)90113-L

    Article  MATH  Google Scholar 

  27. Elahinia, M.H., Ahmadian, M.: An enhanced SMA phenomenological model: II. The experimental study. Smart Mater. Struct. 14(6), 1309–1131 (2005). https://doi.org/10.1088/0964-1726/14/6/023

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (61873045) and in part by the Fundamental Research Funds for the Central Universities (DUT20LAB303).

Author information

Authors and Affiliations

Authors

Contributions

Jiaqi Zhang and Ming Cong conceived and designed the study. Dong Liu, Yu Du, and Hongjiang Ma performed the experiments. Jiaqi Zhang and Dong Liu wrote the paper. Ming Cong, Jiaqi Zhang, Yu Du, Dong Liu, and Hongjiang Ma reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Dong Liu.

Ethics declarations

Conflict of Interest

No conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication.

Code Availability

All code generated or used during the study are available from the corresponding author by request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Cong, M., Liu, D. et al. Design of an Active and Passive Control System for a Knee Exoskeleton with Variable Stiffness Based on a Shape Memory Alloy. J Intell Robot Syst 101, 45 (2021). https://doi.org/10.1007/s10846-021-01319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01319-z

Keywords

Mathematics Subject Classification (2020)

Navigation