Abstract
Particle Filters (PFs) have been successfully employed for monocular 3D model-based tracking of rigid objects. However, these filters depend on the computation of importance weighs that use sub-optimal approximations to the likelihood function. In this paper, we propose to enrich the filter with additional refinement steps to abridge its sub-optimality. We test the proposed approach in two different types of PFs: (i) an Unscented Particle Filter (UPF), and (ii) the recently proposed Unscented Bingham Filter (UBiF). These filters are applied to the outdoor tracking of a fixed-wing Unmanned Aerial Vehicle (UAV) autonomous landing in a Fast Patrol Boat (FPB), tested in a simulated environment with a real sky gradient filled with clouds. The use of the refinement steps significantly improves the overall accuracy of the method.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Availability of data and materials
All the data and materials that support the presented conclusions are included in the manuscript.
References
Abbeel, P., Coates, A., Ng, A.Y.: Autonomous helicopter aerobatics through apprenticeship learning. Int. J. Robot. Res. 29(13), 1608–1639 (2010)
Allan, M., Ourselin, S., Thompson, S., Hawkes, D.J., Kelly, J., Stoyanov, D.: Toward detection and localization of instruments in minimally invasive surgery. IEEE Trans. Biomed. Eng. 60(4), 1050–1058 (2012)
Artieda, J., Sebastian, J.M., Campoy, P., Correa, J.F., Mondragón, I.F., Martínez, C., Olivares, M.: Visual 3-d slam from uavs. J. Intell. Robot. Sys. 55(4-5), 299 (2009)
Azinheira, J.R., Rives, P.: Image-based visual servoing for vanishing features and ground lines tracking: Application to a uav automatic landing. Int. J. Optomechatron. 2(3), 275–295 (2008)
Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with applications to tracking and navigation: theory algorithms and software. Wiley, Hoboken (2004)
Bazin, J.C., Demonceaux, C., Vasseur, P., Kweon, I.: Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment. Int. J. Robot. Res. 31(1), 63–81 (2012)
Bingham, C.: An antipodally symmetric distribution on the sphere, Ann Stat, 1201–1225 (1974)
Birsan, M.: Unscented particle filter for tracking a magnetic dipole target. In: OCEANS 2005. Proceedings of MTS/IEEE, pp 1656–1659. IEEE (2005)
Challa, S.: Fundamentals of object tracking. Cambridge University Press, Cambridge (2011)
Cheng, J., Grossman, M., McKercher, T.: Professional CUDA c programming. Wiley, Hoboken (2014)
Cheng, Y., Crassidis, J.: Particle filtering for sequential spacecraft attitude estimation. In: AIAA guidance, navigation, and control conference and exhibit, p 5337 (2004)
Conway, A.W.: Quaternion treatment of the relativistic wave equation. Proc. Royal Soc. London Ser. A-Math. Phys. Sci. 162(909), 145–154 (1937)
Crassidis, J.L., Markley, F.L.: Unscented filtering for spacecraft attitude estimation. J. Guid. Control Dyn. 26(4), 536–542 (2003)
Dambreville, S., Sandhu, R., Yezzi, A., Tannenbaum, A.: A geometric approach to joint 2d region-based segmentation and 3d pose estimation using a 3d shape prior. SIAM J. Imag. Sci. 3(1), 110–132 (2010)
Darling, J.E., DeMars, K.J.: Uncertainty propagation of correlated quaternion and euclidean states using partially-conditioned gaussian mixtures. In: 2016 19th international conference on information fusion (FUSION), pp 1805–1812. IEEE (2016)
Fallaize, C.J., Kypraios, T.: Exact bayesian inference for the bingham distribution. Stat. Comput. 26(1-2), 349–360 (2016)
Finkelstein, D., Jauch, J.M., Schiminovich, S., Speiser, D.: Foundations of quaternion quantum mechanics. J. Math. Phys. 3(2), 207–220 (1962)
Flury, T., Shephard, N.: Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models. Econ. Theory 27(05), 933–956 (2011)
Forsyth, D.A., Ponce, J.: Computer vision: a modern approach, Prentice Hall Professional Technical Reference (2002)
Gilitschenski, I., Kurz, G., Julier, S.J., Hanebeck, U.D.: Unscented orientation estimation based on the bingham distribution. IEEE Trans. Autom. Control 61(1), 172–177 (2016)
Glover, J., Kaelbling, L.P.: Tracking 3-d rotations with the quaternion bingham filter. Computer Science and Artificial Intelligence Laboratory - Technical Report (2013)
Glover, J., Kaelbling, L.P.: Tracking the spin on a ping pong ball with the quaternion bingham filter. In: 2014 IEEE international conference on robotics and automation (ICRA), pp 4133–4140. IEEE (2014)
Glover, J., Bradski, G., Rusu, R.B.: Monte Carlo pose estimation with quaternion kernels and the bingham distribution. In: Robotics: science and systems, vol. 7, p 97 (2012)
Golub, G.H., Van Loan, C.F.: Matrix computations. Johns Hopkins University Press, Baltimore and London (1996)
Hastings, W.K.: Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1), 97–109 (1970)
Inc I: https://insitu.com/information-delivery/unmanned-systems/scaneagle#3 (2016)
Jammalamadaka, S.R., Sengupta, A.: Topics in circular statistics, vol. 5. World Scientific, Hackensack (2001)
Kantas, N., Doucet, A., Singh, S.S., Maciejowski, J., Chopin, N.: On particle methods for parameter estimation in state-space models. Stat. Sci. 30(3), 328–351 (2015)
Kong, W., Zhang, D., Wang, X., Xian, Z., Zhang, J.: Autonomous landing of an Uav with a ground-based actuated infrared stereo vision system. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2963–2970. IEEE (2013)
Kong, W., Zhou, D., Zhang, Y., Zhang, D., Wang, X., Zhao, B., Yan, C., Shen, L., Zhang, J.: A ground-based optical system for autonomous landing of a fixed wing uav. In: 2014 IEEE/RSJ international conference on intelligent robots and systems, pp 4797–4804. IEEE (2014)
Kraft, E.: A quaternion-based unscented kalman filter for orientation tracking. In: Proceedings of the sixth international conference of information fusion, vol. 1, pp 47– 54 (2003)
Kurz, G., Gilitschenski, I., Hanebeck, U.D.: Recursive nonlinear filtering for angular data based on circular distributions. In: American control conference (ACC), 2013, pp 5439–5445. IEEE (2013)
Kurz, G., Gilitschenski, I., Hanebeck, U.D.: Nonlinear measurement update for estimation of angular systems based on circular distributions. In: American control conference (ACC), 2014, pp 5694–5699. IEEE (2014)
Kurz, G., Gilitschenski, I., Julier, S., Hanebeck, U.D.: Recursive bingham filter for directional estimation involving 180 degree symmetry. J. Adv. Inf. Fus. 9(2), 90–105 (2014)
Lee, T., McClamroch, N.H., Leok, M.: Attitude maneuvers of a rigid spacecraft in a circular orbit. In: 2006 american control conference, pp 6–pp. IEEE (2006)
Lee, T., Leok, M., Mcclamroch, N.H.: Geometric tracking control of a quadrotor Uav on Se (3). In: 49th IEEE conference on decision and control (CDC), pp 5420–5425. IEEE (2010)
Lefferts, E.J., Markley, F.L., Shuster, M.D.: Kalman filtering for spacecraft attitude estimation. J. Guid, Control Dyn. 5(5), 417–429 (1982)
Lepetit, V., Fua, P., et al.: Monocular model-based 3d tracking of rigid objects: a survey. Found. Trends\({\circledR }\) Comput. Graph. Vis. 1(1), 1–89 (2005)
Liu, B., Cheng, S., Shi, Y.: Particle filter optimization: a brief introduction, pp 95–104. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-41000-5_10
Liu, J., West, M.: Combined parameter and state estimation in simulation-based filtering. In: Sequential Monte Carlo methods in practice, pp 197–223. Springer (2001)
Liu, J., West, M.: Combined parameter and state estimation in simulation-based filtering, pp 197–223. Springer, Berlin (2001)
Mardia, K.: Characterizations of directional distributions, pp 365–385. Springer, Berlin (1975)
Mardia, K.V., Jupp, P.E.: Directional statistics, vol. 494. Wiley, Hoboken (2000)
Markley, F., Berman, N., Shaked, U.: Deterministic Ekf-Like estimator for spacecraft attitude estimation. In: American control conference, 1994, vol. 1, pp 247–251. IEEE (1994)
Markley, F.L., Crassidis, J.L.: Fundamentals of spacecraft attitude determination and control, vol. 33. Springer, Berlin (2014)
Okuma, K., Taleghani, A., De Freitas, N., Little, J.J., Lowe, D.G.: A boosted particle filter: Multitarget detection and tracking. In: European conference on computer vision, pp 28–39. Springer (2004)
Okuma, K., Taleghani, A., Freitas, N.d., Little, J.J., Lowe, D.G.: A boosted particle filter: Multitarget detection and tracking. Comput. Vis. ECCV 2004, 28–39 (2004)
Pauwels, K., Rubio, L., Diaz, J., Ros, E.: Real-time model-based rigid object pose estimation and tracking combining dense and sparse visual cues. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2347–2354 (2013)
Pessanha Santos, N., Melicio, F., Lobo, V., Bernardino, A.: A ground-based vision system for uav pose estimation. Int. J. Mechatron. Robot. (IJMR) - UNSYSdigital Int. J. 1(4), 7 (2014). http://ojs.unsysdigital.com/index.php/ijrm/article/view/180
Pessanha Santos, N., Lobo, V., Bernardino, A.: A ground-based vision system for uav tracking. In: OCEANS 2015 - Genova (2015)
Pessanha Santos, N., Lobo, V., Bernardino, A.: Particle filtering based optimization applied to 3d model-based estimation for uav pose estimation. In: OCEANS 2017 - Aberdeen (2017)
Pessanha Santos, N., Lobo, V., Bernardino, A.: 3d model-based estimation for uav tracking. In: OCEANS 2018 - Charleston (2018)
Pessanha Santos, N., Lobo, V., Bernardino, A.: 3d model-based uav pose estimation using gpu. In: OCEANS 2019 MTS/IEEE SEATTLE, pp 1–6. IEEE (2019)
Pessanha Santos, N., Lobo, V., Bernardino, A.: Unmanned aerial vehicle tracking using a particle filter based approach. In: 2019 IEEE underwater technology (UT) - Kaohsiung. IEEE (2019)
Powell, M.: Direct search algorithms for optimization calculations, Acta Numer., 287–336 (1998)
Prisacariu, V.A., Reid, I.D.: Pwp3d: Real-time segmentation and tracking of 3d objects. Int. J. Comput. Vis. 98(3), 335–354 (2012)
Pritchard, J.K., Seielstad, M.T., Perez-Lezaun, A., Feldman, M.W.: Population growth of human y chromosomes: a study of y chromosome microsatellites. Molecul. Biol. Evol. 16(12), 1791–1798 (1999)
Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv:180402767 (2018)
Ross, S.: Introduction to probability models. Academic Press, Cambridge (2010)
Rui, Y., Chen, Y.: Better proposal distributions: object tracking using unscented particle filter. In: CVPR, vol. 2, pp 786–793 (2001)
Sanders, J., Kandrot, E.: CUDA by example: an introduction to general-purpose GPU programming. Addison-Wesley Professional, Boston (2010)
Seo, B.K., Wuest, H.: A direct method for robust model-based 3d object tracking from a monocular rgb image. In: European conference on computer vision, pp 551–562. Springer (2016)
Sigges, F., Baum, M., Hanebeck, U.D.: A likelihood-free particle filter for multi-obiect tracking. In: 2017 20th international conference on information fusion (Fusion), pp 1–5. IEEE (2017)
Smit, S.J.A.: Autonomous landing of a fixed-wing unmanned aerial vehicle using differential Gps. Thesis, Stellenbosch University (2013)
Stachniss, C., Hähnel, D., Burgard, W., Grisetti, G.: On actively closing loops in grid-based fastslam. Adv. Robot. 19(10), 1059–1079 (2005)
Tjaden, H., Schwanecke, U., Schomer, E.: Real-time monocular pose estimation of 3d objects using temporally consistent local color histograms. In: Proceedings of the IEEE international conference on computer vision, pp 124–132 (2017)
Van Der Merwe, R., Doucet, A., De Freitas, N., Wan, E.: The unscented particle filter. In: Advances in neural information processing systems, pp 584–590 (2001)
Vermaak, J., Doucet, A., Perez, P.: Maintaining multi-modality through mixture tracking. In: Proceedings of the ninth IEEE international conference on computer vision (ICCV 2003), vol. 2, p 1110 (2003)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition, 2001. CVPR 2001, vol. 1, pp 511–518. IEEE (2001)
Wenzel, K.E., Masselli, A., Zell, A.: Automatic take off, tracking and landing of a miniature uav on a moving carrier vehicle. J. Intell. Robot. Sys. 61(1-4), 221–238 (2011)
Wilt, N.: The cuda handbook: A comprehensive guide to gpu programming. Pearson Education, London (2013)
Zhao, Y.J., Pei, H.L.: Improved vision-based algorithm for unmanned aerial vehicles autonomous landing. Appl. Mech. Mater. 273, 560–565 (2013)
Zhong, L., Zhang, L.: A robust monocular 3d object tracking method combining statistical and photometric constraints. Int. J. Comput. Vis. 127(8), 973–992 (2019)
Zhong, L., Lu, M., Zhang, L.: A direct 3d object tracking method based on dynamic textured model rendering and extended dense feature fields. IEEE Trans. Circ. Sys. Video Technol. 28(9), 2302–2315 (2018)
Zhou, E., Chen, X.: Sequential monte carlo simulated annealing. J. Global Optim. 55(1), 101–124 (2013). https://doi.org/10.1007/s10898-011-9838-3
Funding
This research did not receive any grant.
Author information
Authors and Affiliations
Contributions
The first author entirely performed this work during his Ph.D. studies and was guided by the second and third authors.
Corresponding author
Ethics declarations
Competing interests
The authors did not have competing interests that could have influenced the work reported in this paper.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pessanha Santos, N., Lobo, V. & Bernardino, A. Unscented Particle Filters with Refinement Steps for UAV Pose Tracking. J Intell Robot Syst 102, 52 (2021). https://doi.org/10.1007/s10846-021-01409-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10846-021-01409-y