Skip to main content
Log in

Integration of a 4D-trajectory Follower to Improve Multi-UAV Conflict Management Within the U-Space Context

  • Regular Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A safe integration of UAVs into the airspace is fundamental to unblock all the potential of drone applications. U-space is the drone traffic management solution for Europe, intended to handle a large number of drones into the airspace, especially at Very Low Level (VLL). This paper is focused on conflict management for multiple unmanned aerial vehicles in the context of the U-space under 4D trajectory based operations (4D-TBO). A novel method for multi-UAV conflict management at tactical level for large-scale scenarios is presented. The integration of 4D-TBO in this context has been implemented with a four dimensional trajectory follower based on the carrot chasing algorithm. This method minimizes, through the whole flight, the mean normal distance to the defined trajectory and the mean difference with respect to the defined arrival times. Finally, the integrated system has been implemented in a software in the loop environment with a commercial autopilot. The simulation results show better performance with respect to other classical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macias, M., Barrado, C., Pastor, E., Royo, P.: The Future of Drones and their Public Acceptance. In: 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC) IEEE. https://doi.org/10.1109/dasc43569.2019.9081623 (2019)

  2. C.O.R.U.S. Consortium: U-Space Concept of Operations. Tech. rep. European Commission (2019)

  3. Liu, W., Hwang, I.: Probabilistic Trajectory Prediction and Conflict Detection for Air Traffic Control. J. Guid. Control. Dyn. 34(6), 1779 (2011). https://doi.org/10.2514/1.53645

    Article  Google Scholar 

  4. Kuenz, A., Peinecke, N.: Tiling the world – Efficient 4D conflict detection for large scale scenarios. In: 2009 IEEE/AIAA 28th Digital Avionics Systems Conference. https://doi.org/10.1109/DASC.2009.5347522, pp 3.B.5–1–3.B.5–10 (2009)

  5. Mercado Velasco, G.A., Borst, C., Ellerbroek, J., van Paassen, M.M., Mulder, M.: The Use of Intent Information in Conflict Detection and Resolution Models Based on Dynamic Velocity Obstacles. IEEE Trans. Intell. Transp. Syst. 16(4), 2297 (2015). https://doi.org/10.1109/TITS.2014.2376031

    Article  Google Scholar 

  6. Alonso-Ayuso, A., Escudero, L.F., Olaso, P., Pizarro, C.: Conflict avoidance: 0-1 linear models for conflict detection & resolution. TOP 21(3), 485 (2013). https://doi.org/10.1007/s11750-011-0224-6

    Article  MathSciNet  Google Scholar 

  7. Yang, J., Yin, D., Niu, Y., Zhu, L.: A survey on unmanned aerial vehicle collision avoidance systems. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). https://doi.org/10.1109/ROBIO.2015.7419704, pp 2436–2441 (2015)

  8. Tang, H., Robinson, J., Denery, D.: Tactical Conflict Detection in Terminal Airspace. In: 10th AIAA Aviation Technology, Integration and Operations (ATIO) Conference American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2010-9294 (2010)

  9. Lalish, E., Morgansen, K.A.: Distributed reactive collision avoidance. Auton. Robot. 32(3), 207 (2012). https://doi.org/10.1007/s10514-011-9267-7

    Article  Google Scholar 

  10. Siqi, H., Cheng, S., Zhang, Y.: A multi-aircraft conflict detection and resolution method for 4-dimensional trajectory-based operation. Chin. J. Aeronaut. 31(7), 1579 (2018)

    Article  Google Scholar 

  11. Honig, W., Kiesel, S., Tinka, A., Durham, J.W., Ayanian, N.: Persistent and Robust Execution of MAPF Schedules in Warehouses. IEEE Robot. Autom. Lett. 4(2), 1125 (2019). https://doi.org/10.1109/lra.2019.2894217

    Article  Google Scholar 

  12. Mellinger, D., Kushleyev, A., Kumar, V.: Mixed-Integer Quadratic Program Trajectory Generation for Heterogeneous Quadrotor Teams. In: 2012 IEEE International Conference on Robotics and Automation pp. 477–483. https://doi.org/10.1109/ICRA.2012.6225009 (2012)

  13. Yu, J., Lavalle, S.M.: Optimal Multirobot Path Planning on Graphs : Complete Algorithms and Effective Heuristics. IEEE Trans. Robot. 32(5), 1163 (2016). https://doi.org/10.1109/TRO.2016.2593448

    Article  Google Scholar 

  14. Turpin, M., Mohta, K., Michael, N., Kumar, V.: Goal assignment and trajectory planning for large teams of interchangeable robots. Auton. Robot. 37(4), 401 (2014). https://doi.org/10.1007/s10514-014-9412-1

    Article  Google Scholar 

  15. Karamouzas, I., Guy, S.J.: Prioritized Group Navigation with Formation Velocity Obstacles. In: 2015 IEEE International Conference on Robotics and Automation (ICRA) pp. 5983–5989. https://doi.org/10.1109/ICRA.2015.7140038 (2015)

  16. Alonso-mora, J., Montijano, E., Schwager, M., Rus, D.: Distributed Multi-Robot Formation Control among Obstacles : A Geometric and Optimization Approach with Consensus. In: 2016 IEEE International Conference on Robotics and Automation (ICRA) pp. 5356–5363. https://doi.org/10.1109/ICRA.2016.7487747 (2016)

  17. Coulter, R.C.: Implementation of the Pure Pursuit Path Tracking Algorithm. Tech. rep. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992)

  18. Micaelli, A., Samson, C.: Trajectory Tracking for Unicycle-Type and Two-Steering-Wheels Mobile Robots. Ph.D. thesis, INRIA (1993)

  19. Fossen, T.I., Breivik, M., Skjetne, R.: Line-of-sight path following of underactuated marine craft. IFAC Proceedings 36(21), 211 (2003)

    Google Scholar 

  20. Nelson, D.R., Barber, D.B., McLain, T.W., Beard, R.W.: Vector field path following for miniature air vehicles. IEEE Trans. Robot. 23(3), 519 (2007)

    Article  Google Scholar 

  21. Perez-Leon, H., Acevedo, J.J., Maza, I., Ollero, A.: A 4D trajectory follower based on the ‘Carrot chasing’ algorithm for UAS within the U-space context. In: Proc of the International Conference on Unmanned Aircraft System (ICUAS) (2020)

  22. Peinecke, N., Kuenz, A.: Deconflicting the urban drone airspace. In: AIAA/IEEE digital avionics systems conference - proceedings 2017-Septe. https://doi.org/10.1109/DASC.2017.8102048 (2017)

  23. Acevedo, J.J., Castao, R., Andrade-Pineda, J.L., Ollero, A.: A 4D grid based approach for efficient conflict detection in large-scale multi-UAV scenarios. In: 2019 workshop on research Education and Development of Unmanned Aerial Systems (RED UAS). https://doi.org/10.1109/REDUAS47371.2019.8999724, pp 18–23 (2019)

  24. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source Robot Operating System. ICRA workshop on open source system (2009)

  25. Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat, No.04CH37566), vol. 3. https://doi.org/10.1109/IROS.2004.1389727, vol. 3, pp 2149–2154 (2004)

  26. Meier, L., Honegger, D., Pollefeys, M.: PX4: A node-based multithreaded open source robotics framework for deeply embedded platforms. In: Proceedings of the IEEE international conference on robotics and automation. https://doi.org/10.1109/ICRA.2015.7140074 (2015)

  27. Real, F., Torres-González, A., Ramón-Soria, P., Capitán, J., Ollero, A.: Unmanned aerial vehicle abstraction layer: An abstraction layer to operate unmanned aerial vehicles. Int. J. Adv. Robot. Syst. 17(4), 172988142092501 (2020). https://doi.org/10.1177/1729881420925011

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the GAUSS (H2020-GALILEO-GSA-776293) European project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Perez-Leon.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A version of this paper, entitled A 4D trajectory follower based on the ‘Carrot chasing’ algorithm for UAS within the U-space context, appeared in the Proceedings of The 2020 International Conference on Unmanned Aircraft Systems (ICUAS’20), Athens, Greece

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Leon, H., Acevedo, J.J., Maza, I. et al. Integration of a 4D-trajectory Follower to Improve Multi-UAV Conflict Management Within the U-Space Context. J Intell Robot Syst 102, 62 (2021). https://doi.org/10.1007/s10846-021-01415-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01415-0

Keywords

Navigation