Skip to main content

Advertisement

Log in

ROSI: A Robotic System for Harsh Outdoor Industrial Inspection - System Design and Applications

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Belt Conveyors are essential for transporting dry bulk material in different industries. Such structures require permanent inspections, traditionally executed by human operators based on cognition. To improve working conditions and process standardization, we propose a novel procedure to inspect conveyor structures with a ground robot composed by a mobile platform, a robotic arm, and a sensor-set. Based on field experience, we introduce ROSI, a new robotic device designed for long-term operations in harsh outdoor environments. The mobile robot has a hybrid locomotion system, using wheels to reduce energy consumption while covering long distances, and also flippers with tracks to improve mobility during obstacle negotiation. A mechanical passive switch allows decoupling tracks’ traction, reducing components wear and energy consumption without raising mechanical complexity. Aiming the robot-assisted operation, control strategies help to (i) command both the mobile platform and a robotic manipulator considering the system whole-body model, (ii) adjust the contact force for touching the conveyor structure during vibration inspection, and (iii) climb stairs while automatically adjusting the flippers. Machine Learning algorithms detect conveyors’ dirt build-ups, roller failures, and bearing faults by processing visual, thermal and sound data as inspection functionalities. The algorithms training and validation use a dataset collected from running conveyors at Vale, presenting detection accuracy superior to 90%. Field test results in a mining site demonstrate the robot capabilities to stand for the harsh operating conditions while executing all the required inspection tasks, stating ROSI as a disruptive solution for Belt Conveyor inspections and other general industrial operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aminossadati, S., Yang, B.: Fibre-optic conveyor monitoring system. Tech. rep. Australian Coal Research Limited (2014)

  2. Carvalho, R., Nascimento, R., D’Angelo, T., Delabrida, S., GC Bianchi, A., Oliveira, R.A., Azpúrua, H., Uzeda Garcia, L.G.: A UAV-based framework for semi-automated thermographic inspection of belt conveyors in the mining industry. Sensors 20(8), 2243 (2020)

    Article  Google Scholar 

  3. Chan, D.K., Silva, R.K., Monteiro, J.C., Lizarralde, F.: Efficient stairway detection and modeling for autonomous robot climbing. In: Proc. of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5916–5921. Vancouver (Canada) (2017)

  4. Chen, D., Liu, Q., He, Z.: Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR. Optics Express 25(7), 8315–8325 (2017)

    Article  Google Scholar 

  5. Cruz, E., Reis, A., Guimaraes, F., Almeida, S.: Conveyor belt roller failure detection system based on machine learning. 7th International Congress on Automation in mining (Automining 2020) (2020)

  6. D’Angelo, T., Mendes, M., Keller, B., Ferreira, R., Delabrida, S., Rabelo, R., Azpurua, H., Bianchi, A.: Deep learning-based object detection for digital inspection in the mining industry. In: 18Th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 633–640 (2019)

  7. Faria, H.D., Lizarralde, F., Costa, R.R., Andrade, R.H.R., Silva, T.H., Pereira, R.F.S., Barbosa, E.S., Rocha, F., Franca, A., Freitas, G.M., Pessin, G.: ROSI: A mobile robot for inspection of belt conveyor. In: Proc. 21st IFAC World Congress, pp. 10166–10171. Berlin (Germany) (2020)

  8. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  9. Freitas, G., nd Gabriel, C., Garcia, M.P.T., Rocha, F., Franca, A., Fonseca, F.R., Lizarralde, F., Costa, R.R., Neves, A.F., Monteiro, J.C.: Robot device, and method for inspection of components of a belt conveyor (Deposit, May 18th 2018). Patent: BR102018010213 - CA3100772 - CN112533845 - WO2019218035

  10. Freitas, R.S., Xaud, M.F., Marcovistz, I., Neves, A.F., Faria, R.O., Carvalho, G.P., Hsu, L., Nunes, E.V., Peixoto, A.J., Lizarralde, F., Freitas, G., R.Costa, R., From, P., Galassi, M., Derks, W.J., AndersRøyrøy, P: The embedded electronics and software of DORIS offshore robot. In: 2Nd IFAC Workshop on Automatic Control in Offshore Oil and Gas Production ACOOGP, pp. 208–213. Florianopolis (Brazil) (2015)

  11. Garcia, G., Rocha, F., Torre, M., Serrantola, W., Lizarralde, F., Franca, A., Pessin, G., Freitas, G.: ROSI: A novel robotic method for belt conveyor structures inspection. In: 19Th IEEE International Conference on Advanced Robotics (ICAR), pp. 326–331 (2019)

  12. Géron, A.: Hands-on Machine Learning with Scikit-Learn, Keras, and tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems O’Reilly Media (2019)

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  14. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: Octomap: an efficient probabilistic 3d mapping framework based on octrees. Autonomous Robots 34(3), 189–206 (2013)

    Article  Google Scholar 

  15. Lodewijks, G.: Strategies for automated maintenance of belt conveyor systems. Bulk Solids Handling 24(1), 16–22 (2004)

    Google Scholar 

  16. Mandow, A., Martinez, J.L., Morales, J., Blanco, J.L., Garcia-Cerezo, A., Gonzalez, J.: Experimental kinematics for wheeled skid-steer mobile robots. In: 2007 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1222–1227. IEEE (2007)

  17. Merriaux, P., Rossi, R., Boutteau, R., Vauchey, V., Qin, L., Chanuc, P., Rigaud, F., Roger, F., Decoux, B., Savatier, X.: The VIKINGS autonomous inspection robot: Competing in the argos challenge. IEEE Robot. Autom. Mag. 26(1), 21–34 (2018)

    Article  Google Scholar 

  18. Nakahara, H., Yonekawa, H., Fujii, T., Sato, S.: A Lightweight YOLOv2: A Binarized CNN with a parallel support vector regression for an FPGA. In: Proc. of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 31–40 (2018)

  19. Nakamura, Y., Hanafusa, H.: Inverse kinematic solutions with singularity robustness for robot manipulator control. Journal of Dynamic Systems, Measurement, and Control 108(3), 163–171 (1986)

    Article  Google Scholar 

  20. Nascimento, R., Carvalho, R., Delabrida, S., Bianchi, A.G.C., Oliveira, R.A.R., Garcia, L.G.U.: An integrated inspection system for belt conveyor rollers - advancing in an enterprise architecture. In: Proc. of the 19Th International Conference on Enterprise Information Systems (ICEIS), Vol. 2. INSTICC, pp. 190–200 (2017)

  21. Pang, Y., Lodewijks, G.: The application of RFID technology in large-scale dry bulk material transport system monitoring. In: 2011 IEEE Workshop on Environmental Energy and Structural Monitoring Systems, pp. 1–5 (2011)

  22. Rezaei, A., Dadouche, A., Wickramasinghe, V., Dmochowski, W.: A comparison study between acoustic sensors for bearing fault detection under different speed and load using a variety of signal processing techniques. Tribol. Trans. 54(2), 179–186 (2011)

    Article  Google Scholar 

  23. Santos, A.A., Rocha, F.A.S., da, R., Reis, A.J., Guimarães, F.G.: Automatic system for visual detection of dirt buildup on conveyor belts using convolutional neural networks. Sensors 20(20), 5762 (2020)

    Article  Google Scholar 

  24. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. 1st edn, Springer (2008)

  25. Silva, R., Costa, R., Soares, E., Faria, H., Silva, T., Andrade, R., Bernardo, M., Lizarralde, F., Freitas, G., Stanzani, A., Fonseca, F., Pessin, G., Rocha, F.: Passive traction control systems for a hybrid vehicle (Deposit, May 3rd 2020) BR Patent 10 2020 013081 1

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  27. Skoczylas, A., Stefaniak, P., Anufriiev, S., Jachnik, B.: Belt conveyors rollers diagnostics based on acoustic signal collected using autonomous legged inspection robot. Appl. Sci. 11(5), 2299 (2021)

    Article  Google Scholar 

  28. Staab, H., Botelho, E., Lasko, D.T., Shah, H., Eakins, W., Richter, U.: A Robotic Vehicle System for Conveyor Inspection in Mining. In: IEEE International Conference on Mechatronics (ICM), Vol. 1. pp. 352–357 (2019)

  29. Staab, H.J., Rossano, G., Botelho, E., Fuhlbrigge, T., Zhang, G., Choi, S., Martinez, C.: Conveyor inspection with unmanned vehicle carying sensor structure (Apr 24th 2018). US Patent 9,950,873 B2

  30. Szrek, J., Wodecki, J., Blazej, R., Zimroz, R.: An inspection robot for belt conveyor maintenance in underground mine—infrared thermography for overheated idlers detection. Appl. Sci. 10(14), 4984 (2020)

    Article  Google Scholar 

  31. Tandon, N., Choudhury, A.: A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribol. Int. 32, 469–480 (1999)

    Article  Google Scholar 

  32. Ustundag, A., Cevikcan, E.: Industry 4.0: managing the digital transformation. Springer (2017)

  33. Yang, W., Zhang, X., Ma, H.: An inspection robot using infrared thermography for belt conveyor. In: Proc. of the 13Th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 400–404 (2016)

Download references

Acknowledgements

This work was financed in part by Brazilian National Research Council CNPq, the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 88887.136349/2017-00 and 001, VALE S.A. and Instituto Tecnologico Vale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Rocha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, F., Garcia, G., Pereira, R.F.S. et al. ROSI: A Robotic System for Harsh Outdoor Industrial Inspection - System Design and Applications. J Intell Robot Syst 103, 30 (2021). https://doi.org/10.1007/s10846-021-01459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01459-2

Keywords

Navigation