Skip to main content
Log in

Gaussian Processes in Polar Coordinates for Mobile Robot Using SE(2)-3D Constraints

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper focuses on localization and mapping issues for autonomous mobile robots equipped with low-cost 2D lidar in complex environments. Most existing solutions commonly parameterize the robot pose on SE(3) when the robot moves on the rough ground and uses the scan data that may be insufficient or sparse to build the map. In this paper, we first developed the Gaussian Process (GP) to address insufficient scan data for low-precision 2D lidar by enriching the lidar measurements at interest or specific bearing regions. Meanwhile, A new method, based on the graph optimization framework, to solve the non-SE(2) perturbations is proposed, namely SE2-3D constraint, which directly parameterizes the robot pose as SE(2) without ignoring the non-SE(2) perturbations by associating the extended SE(2) pose with map point via lidar measurements. The experimental results indicate that the raw lidar data processed by our method can generate higher quality maps than the original data under the same working conditions. The simulation results verify that the proposed method has higher performance in terms of accuracy than traditional methods. This paper provides a meaningful solution for the broad application of ground mobile robots equipped with low-cost 2D lidar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part i. IEEE Robot. Autom. Mag. 13, 99–110 (2006)

    Article  Google Scholar 

  2. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (slam): part ii. IEEE Robot. Autom. Mag. 13, 108–117 (2006)

    Article  Google Scholar 

  3. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.: Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 32, 1309–1332 (2016)

    Article  Google Scholar 

  4. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W: G2o: A general framework for graph optimization. In: 2011 IEEE International Conference on Robotics and Automation, pp 3607–3613 (2011)

  5. Ahmadi, E., Meghdari, A., Alemi, M.: A socially aware slam technique augmented by person tracking module. J. Intell. Robot. Syst. 99, 3–12 (2020)

    Article  Google Scholar 

  6. Quan, M., Piao, S., Tan, M., Huang, S. -S.: Tightly-coupled monocular visual-odometric slam using wheels and a mems gyroscope. IEEE Access 7, 97374–97389 (2019)

    Article  Google Scholar 

  7. Wu, K., Guo, C.X., Georgiou, G.A., Roumeliotis, S.: Vins on wheels. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 5155–5162 (2017)

  8. Filatov, A., Filatov, A., Krinkin, K., Chen, B., Molodan, D.: 2d slam quality evaluation methods. In: 2017 21st Conference of Open Innovations Association (FRUCT), pp 120–126 (2017)

  9. Besl, P., McKay, N.: Method for registration of 3-d shapes. In: Other Conferences (1992)

  10. Olson, E.: Real-time correlative scan matching. In: 2009 IEEE International Conference on Robotics and Automation, pp 4387–4393 (2009)

  11. Maiseli, B., Gu, Y., Gao, H.: Recent developments and trends in point set registration methods. J. Vis. Commun. Image Represent. 46, 95–106 (2017)

    Article  Google Scholar 

  12. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2d lidar slam. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp 1271–1278 (2016)

  13. Du, S., Li, X., Lauterbach, H.A., Borrmann, D., Nüchter, A.: Combining lidar scan matching with stereo visual odometry using curvefusion. In: 2021 International Conference on Computer, Control and Robotics (ICCCR), pp 335–339 (2021)

  14. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 23, 34–46 (2007)

    Article  Google Scholar 

  15. Zhang, J., Singh, S.: Low-drift and real-time lidar odometry and mapping. Auton. Robot. 41, 401–416 (2017)

    Article  Google Scholar 

  16. Shan, T., Englot, B: Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 4758–4765 (2018)

  17. Olson, E.: M3rsm: Many-to-many multi-resolution scan matching. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp 5815–5821 (2015)

  18. Gao, Y., Liu, S., Atia, M., Noureldin, A.: Ins/gps/lidar integrated navigation system for urban and indoor environments using hybrid scan matching algorithm. Sensors (Basel Switzerland) 15, 23286–23302 (2015)

    Article  Google Scholar 

  19. Kohlbrecher, S., von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable slam system with full 3d motion estimation. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, pp 155–160 (2011)

  20. Tang, J., Chen, Y., Kukko, A., Kaartinen, H., Jaakkola, A., Khoramshahi, E., Hakala, T., Hyyppä, J., Holopainen, M., Hyyppä, H.: Slam-aided stem mapping for forest inventory with small-footprint mobile lidar. Forests 6, 4588–4606 (2015)

    Article  Google Scholar 

  21. Liang, X., Hyyppä, J., Kukko, A., Kaartinen, H., Jaakkola, A., Yu, X.: The use of a mobile laser scanning system for mapping large forest plots. IEEE Geosci. Remote Sens. Lett. 11, 1504–1508 (2014)

    Article  Google Scholar 

  22. Rasmussen, C., Williams, C.K.I.: Gaussian processes for machine learning. In: Adaptive computation and machine learning (2009)

  23. Urtasun, R., Fleet, D.J., Fua, P.: 3d people tracking with gaussian process dynamical models. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp 238–245 (2006)

  24. Vasudevan, S., Ramos, F., Nettleton, E., Durrant-H Whyte, H: Gaussian process modeling of large scale terrain. In: 2009 IEEE International Conference on Robotics and Automation, pp 1047–1053 (2009)

  25. Guizilini, V., Ramos, F.: Variational hilbert regression for terrain modeling and trajectory optimization. Int. J. Robot. Res. 38, 1375–1387 (2019)

    Article  Google Scholar 

  26. Tong, C., Furgale, P., Barfoot, T: Gaussian process gauss-newton: Non-parametric state estimation. In: 2012 Ninth Conference on Computer and Robot Vision, pp 206–213 (2012)

  27. Tong, C., Barfoot, T: Gaussian process gauss-newton for 3d laser-based visual odometry. In: 2013 IEEE International Conference on Robotics and Automation, pp 5204–5211 (2013)

  28. Tong, C., Furgale, P., Barfoot, T.: Gaussian process gauss–newton for non-parametric simultaneous localization and mapping. Int. J. Robot. Res. 32, 507–525 (2013)

    Article  Google Scholar 

  29. Mukadam, M., Dong, J., Yan, X., Dellaert, F., Boots, B.: Continuous-time gaussian process motion planning via probabilistic inference. Int. J. Robot. Res. 37, 1319–1340 (2018)

    Article  Google Scholar 

  30. Dong, J., Mukadam, M., Dellaert, F., Boots, B.: Motion planning as probabilistic inference using gaussian processes and factor graphs, in Robotics: Science and Systems (2016)

  31. Li, B., Wang, Y., Zhang, Y., jie Zhao, W., Ruan, J., Li, P.: Gp-slam: laser-based slam approach based on regionalized gaussian process map reconstruction. Auton. Robots 44, 947–967 (2020)

    Article  Google Scholar 

  32. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: Imu preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation. In: Robotics Science and Systems (2015)

  33. Konolige, K., Grisetti, G., Kümmerle, R., Burgard, W., Limketkai, B., Vincent, R.: Efficient sparse pose adjustment for 2d mapping. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 22–29 (2010)

Download references

Funding

Xi’an Science and Technology Bureau [2017040CG/CG014].

Author information

Authors and Affiliations

Authors

Contributions

Wei Chen: contributed the central idea, analysed most of the data, and wrote the initial draft of the paper. Jian Sun: Reviewed and Edited. Ziheng Zhao: designed computer programs. Qiang Zheng: conducted the analyses. all authors discussed the results and revised the manuscript.

Corresponding author

Correspondence to Jian Sun.

Ethics declarations

Consent to Participate:

Approve.

Consent to Publish:

Approve.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Sun, J., Zhao, Z. et al. Gaussian Processes in Polar Coordinates for Mobile Robot Using SE(2)-3D Constraints. J Intell Robot Syst 103, 72 (2021). https://doi.org/10.1007/s10846-021-01520-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01520-0

Keywords

Navigation