Skip to main content
Log in

Repulsion-Oriented Reciprocal Collision Avoidance for Multiple Mobile Robots

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a new collision avoidance algorithm based on velocity obstacles (VO) is proposed for distributed mobile robots to achieve oscillation-free autonomous navigation, which is called repulsion-oriented reciprocal collision avoidance (RORCA). Firstly, the problem of reciprocal collision avoidance for autonomous robots is defined. Each robot makes independent decisions by sensing the position and velocity of its surrounding objects without centralized coordination or communication with other robots. The final aims of the robots are to reach some pre-defined goals. Secondly, the VO algorithm and its variants are reviewed. Their potential problems in trajectory smoothness and navigation safety are used as test elements of the new algorithm. The RORCA algorithm considers the virtual repulsion direction of the paired robots and the reciprocity of collision avoidance between them to constructs a feasible velocity set for each robot. This set is proved to be a non-empty convex set containing at least zero vector. In this way, the local motion planning of the robot is transformed into a convex optimization problem for solving the optimal velocity on this set. For ease of explanation, we elaborate the algorithm in a two-dimensional (2D) workspace, which takes into account the kinematics constraints and measurement uncertainty from sensors. Then, the expansion of the RORCA in three-dimensional (3D) space is introduced. Finally, comparative simulations are performed in 2D and 3D scenarios to demonstrate the effectiveness of the proposed technique. The results show that the RORCA algorithm is particularly suitable for solving the problems trajectory oscillation, reciprocal dance and potential collisions of robots in dense environments, and it has excellent performance in safety and computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, X., Yi, J., Ding, H., He, L.: Velocity obstacle based on vertical ellipse for multi-robot collision avoidance. J. Intell. Robot. Syst. Theory Appl. 99, 183–208 (2020). https://doi.org/10.1007/s10846-019-01127-6

    Article  Google Scholar 

  2. Krishnan, P.S., Manimala, K.: Implementation of optimized dynamic trajectory modification algorithm to avoid obstacles for secure navigation of UAV. Appl. Soft Comput. J. 90, 106168 (2020). https://doi.org/10.1016/j.asoc.2020.106168

    Article  Google Scholar 

  3. Zhao, Y., Li, W., Shi, P.: A real-time collision avoidance learning system for unmanned surface vessels. Neurocomputing. 182, 255–266 (2016). https://doi.org/10.1016/j.neucom.2015.12.028

    Article  Google Scholar 

  4. Durand, N.: Constant speed optimal reciprocal collision avoidance. Transp. Res. Part C Emerg. Technol. 96, 366–379 (2018). https://doi.org/10.1016/j.trc.2018.10.004

    Article  Google Scholar 

  5. Kumar, P.B., Muni, M.K., Parhi, D.R.: Navigational analysis of multiple humanoids using a hybrid regression-fuzzy logic control approach in complex terrains. Appl. Soft Comput. J. 89, 106088 (2020). https://doi.org/10.1016/j.asoc.2020.106088

    Article  Google Scholar 

  6. Bayindir, L.: A review of swarm robotics tasks. Neurocomputing. 172, 292–321 (2016). https://doi.org/10.1016/j.neucom.2015.05.116

    Article  Google Scholar 

  7. Das, P.K., Jena, P.K.: Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators. Appl. Soft Comput. J. 92, 106312 (2020). https://doi.org/10.1016/j.asoc.2020.106312

    Article  Google Scholar 

  8. Deits, R., Tedrake, R.: Efficient Mixed-Integer Planning for UAVs in Cluttered Environments. In: Proceedings - IEEE International Conference on Robotics and Automation (2015). https://doi.org/10.1109/ICRA.2015.7138978

  9. Yu, X., Zhou, X., Zhang, Y.: Collision-free trajectory generation and tracking for UAVs using Markov decision process in a cluttered environment. J. Intell. Robot. Syst. Theory Appl. 93, 17–32 (2019). https://doi.org/10.1007/s10846-018-0802-z

    Article  Google Scholar 

  10. Wang, W., Zuo, L., Xu, X.: A learning-based multi-RRT approach for robot path planning in narrow passages. J. Intell. Robot. Syst. Theory Appl. 90, 81–100 (2018). https://doi.org/10.1007/s10846-017-0641-3

    Article  Google Scholar 

  11. Xu, M., Wu, Y., Lv, P., Jiang, H., Luo, M., Ye, Y.: MiSFM: on combination of mutual information and social force model towards simulating crowd evacuation. Neurocomputing. 168, 529–537 (2015). https://doi.org/10.1016/j.neucom.2015.05.074

    Article  Google Scholar 

  12. Patle, B.K., Parhi, D.R.K., Jagadeesh, A., Kashyap, S.K.: Application of probability to enhance the performance of fuzzy based mobile robot navigation. Appl. Soft Comput. J. 75, 265–283 (2019). https://doi.org/10.1016/j.asoc.2018.11.026

    Article  Google Scholar 

  13. Ge, X., Han, Q.L., Ding, D., Zhang, X.M., Ning, B.: A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems. Neurocomputing. 275, 1684–1701 (2018). https://doi.org/10.1016/j.neucom.2017.10.008

    Article  Google Scholar 

  14. Rasekhipour, Y., Khajepour, A., Chen, S.K., Litkouhi, B.: A potential field-based model predictive path-planning controller for autonomous road vehicles. IEEE Trans. Intell. Transp. Syst. 18, 1255–1267 (2017). https://doi.org/10.1109/TITS.2016.2604240

    Article  Google Scholar 

  15. Lee, B.H., Jeon, J.D., Oh, J.H.: Velocity obstacle based local collision avoidance for a holonomic elliptic robot. Auton. Robot. 41, 1347–1363 (2017). https://doi.org/10.1007/s10514-016-9580-2

    Article  Google Scholar 

  16. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17, 760–772 (1998). https://doi.org/10.1177/027836499801700706

    Article  Google Scholar 

  17. Qi, X., Luo, Y., Wu, G., Boriboonsomsin, K., Barth, M.: Deep reinforcement learning enabled self-learning control for energy efficient driving. Transp. Res. Part C Emerg. Technol. 99, 67–81 (2019). https://doi.org/10.1016/j.trc.2018.12.018

    Article  Google Scholar 

  18. Mukadam, M., Dong, J., Yan, X., Dellaert, F., Boots, B.: Continuous-time Gaussian process motion planning via probabilistic inference. Int. J. Robot. Res. 37, 1319–1340 (2018). https://doi.org/10.1177/0278364918790369

    Article  Google Scholar 

  19. Van Berg, J. Den, Lin, M., Manocha, D.: Reciprocal Velocity Obstacles for Real-Time Multi-Agent Navigation. In: Proceedings - IEEE International Conference on Robotics and Automation (2008). https://doi.org/10.1109/ROBOT.2008.4543489

  20. Van Den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Springer Tracts in Advanced Robotics (2011). https://doi.org/10.1007/978-3-642-19457-3_1

  21. Snape, J., Van Den Berg, J., Guy, S.J., Manocha, D.: The hybrid reciprocal velocity obstacle. IEEE Trans. Robot. 27, 696–706 (2011). https://doi.org/10.1109/TRO.2011.2120810

    Article  Google Scholar 

  22. Van Den Berg, J., Snape, J., Guy, S.J., Manocha, D.: Reciprocal Collision Avoidance with Acceleration-Velocity Obstacles. In: Proceedings - IEEE International Conference on Robotics and Automation (2011). https://doi.org/10.1109/ICRA.2011.5980408

  23. Rufli, M., Alonso-Mora, J., Siegwart, R.: Reciprocal collision avoidance with motion continuity constraints. IEEE Trans. Robot. 29, 899–912 (2013). https://doi.org/10.1109/TRO.2013.2258733

    Article  Google Scholar 

  24. Rashid, A.T., Ali, A.A., Frasca, M., Fortuna, L.: Multi-robot collision-free navigation based on reciprocal orientation. Robot. Auton. Syst. 60, 1221–1230 (2012). https://doi.org/10.1016/j.robot.2012.07.006

    Article  Google Scholar 

  25. Ali, A.A., Rashid, A.T., Frasca, M., Fortuna, L.: An algorithm for multi-robot collision-free navigation based on shortest distance. Robot. Auton. Syst. 75, 119–128 (2016). https://doi.org/10.1016/j.robot.2015.10.010

    Article  Google Scholar 

  26. Alonso-Mora, J., Beardsley, P., Siegwart, R.: Cooperative collision avoidance for nonholonomic robots. IEEE Trans. Robot. 34, 404–420 (2018). https://doi.org/10.1109/TRO.2018.2793890

    Article  Google Scholar 

  27. Alonso-Mora, J., Naegeli, T., Siegwart, R., Beardsley, P.: Collision avoidance for aerial vehicles in multi-agent scenarios. Auton. Robot. 39, 101–121 (2015). https://doi.org/10.1007/s10514-015-9429-0

    Article  Google Scholar 

  28. Bareiss, D., Van Den Berg, J.: Generalized reciprocal collision avoidance. Int. J. Robot. Res. 34, 1501–1514 (2015). https://doi.org/10.1177/0278364915576234

    Article  Google Scholar 

  29. Gopalakrishnan, B., Singh, A.K., Kaushik, M., Krishna, K.M., Manocha, D.: PRVO: Probabilistic Reciprocal Velocity Obstacle for Multi Robot Navigation under Uncertainty. In: IEEE International Conference on Intelligent Robots and Systems (2017). https://doi.org/10.1109/IROS.2017.8202279

  30. Welch, G., Bishop, G.: An introduction to the Kalman filter. In Pract. 7, 10.1.1.117.6808 (2006)

    Google Scholar 

  31. Wang, C., Chi, W., Sun, Y., Meng, M.Q.H.: Autonomous robotic exploration by incremental road map construction. IEEE Trans. Autom. Sci. Eng. 16, 1720–1731 (2019). https://doi.org/10.1109/TASE.2019.2894748

    Article  Google Scholar 

  32. Berger, J., Boukhtouta, A., Benmoussa, A., Kettani, O.: A new mixed-integer linear programming model for rescue path planning in uncertain adversarial environment. Comput. Oper. Res. 39, 3420–3430 (2012). https://doi.org/10.1016/j.cor.2012.05.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (under Grant 51807003).

Availability of Data and Material

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

The custom code used during the current study is available from the corresponding author on reasonable request.

Funding

This work was supported by the National Natural Science Foundation of China (under Grant 51807003).

Author information

Authors and Affiliations

Authors

Contributions

Shaojie Wang: Conceptualization, Methodology, Software, Validation, Writing-original draft. Xiaoguang Hu: Conceptualization, Validation. Jin Xiao: Conceptualization, Validation.

Corresponding author

Correspondence to Jin Xiao.

Ethics declarations

Ethics Approval

Not applicable.

Conflicts of Interest/Competing Interests

The authors have no financial or proprietary interests in any material discussed in this article.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Hu, X., Xiao, J. et al. Repulsion-Oriented Reciprocal Collision Avoidance for Multiple Mobile Robots. J Intell Robot Syst 104, 12 (2022). https://doi.org/10.1007/s10846-021-01528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01528-6

Keywords

Navigation