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Abstract
Coal moisture content monitoring plays an important role in carbon reduction and clean energy decisions of coal trans-
portation-storage aspects. Traditional coal moisture content detection mechanisms rely heavily on detection equipment, 
which can be expensive or difficult to deploy under field conditions. To achieve fast prediction of coal moisture content, a 
novel neural network model based on attention mechanism and bidirectional ResNet-LSTM structure (ABRM) is proposed 
in this paper. The prediction of coal moisture content is achieved by training the model to learn the relationship between 
changes of coal moisture content and meteorological conditions. The experimental results show that the proposed method 
has superior performance in terms of moisture content prediction accuracy compared with other state-of-the-art methods, 
and that ABRM model approaches appear to have the greatest potential for predicting coal moisture content shifts in the 
face of meteorological elements.

Keywords  Coal moisture content · Meteorological elements · Deep learning · CNN · LSTM

1  Introduction

In September 2020, China set the path and timeline for 
achieving peaking carbon dioxide emissions and net zero 
carbon emissions, namely “carbon neutrality”. Currently, 
the energy industry is actively implementing an energy 
transition to gradually move towards the goal of achieving 
carbon peaking. At the same time, the coal industry is also 
promoting a new process of using fossil energy in a more 
environmentally friendly way, and achieving cleaner use 

of coal and lower carbon emissions through technological 
innovation and intelligent technologies in coal mining, stor-
age, and transportation [1]. And the dynamic monitoring of 
coal moisture in coal storage and transportation will provide 
effective technical means for coal storage and transportation, 
dust suppression in coal yards and clean utilization. There-
fore, it is important to study coal moisture content prediction 
and monitoring technology to improve coal transportation 
and storage safety, reduce environmental pollution in the 
yard, and reduce carbon emission index of coal storage and 
transportation [2].

The online measurement methods of coal moisture 
can be categorized into two types, namely, direct hard-
ware sensing and indirect soft sensing. Cutmore et al. [3] 
proposed a contactless microwave gauge for the on-belt 
determination of total moisture content in coal prepara-
tion plants, thus achieving the online detection of moisture 
content in coal. Deliang Zeng et al. [4] presented a soft 
sensing model for coal moisture based on the energy and 
mass balance of material in the inlet and outlet of a positive 
pressure, direct combustion, MPS-type mill, which reduces 
the delay time for moisture measurement. Yuman Wang [5] 
modified the microwave transmission coal moisture con-
tent detection method using least squares support vector 
machine algorithm to further improve the detection accu-
racy. Mao et al. [6] proposed a rapid detection of the total 
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moisture content of coal using low-field nuclear magnetic 
resonance (NMR), thereby providing a new and effective 
tool for online detection of moisture content in coal from 
coal processing plants.

The above coal moisture online detection methods have 
been applied to coal storage yards and played a role in 
improving the decision of coal storage and transportation 
control, but there are still some shortcomings in detection 
speed, measurement accuracy and stability: (1) They require 
long moisture content analysis time with poor real-time 
detection performance of the target, thus have difficulty in 
providing real-time effective decision support. For example, 
the commonly used vacuum high temperature drying method 
requires at least 2 h to determine the moisture content. (2) 
During coal storage and transportation, water mist and dust 
is common interference in the environment. The above-men-
tioned methods have lower detection accuracy. (3) Dynamic 
monitoring models cannot be constructed, and the whole 
system may be susceptible to external perturbations such as 
meteorological changes and operational activities.

In recent years, with the extensive research on machine 
learning technology, deep learning has been widely used in 
many fields [7–11]. Currently, in regards to moisture dynam-
ics prediction, neural network models are often applied to 
soil, crops, wood, etc [12–17]. There is a complex interac-
tion between moisture changes and meteorological factors 
in these objects, and only by fully extracting the features of 
this complex relationship can reliable prediction results be 
obtained [18, 19]. According to relevant studies, the mois-
ture content is a dynamic and continuous process in the time 
dimension, i.e., there is an interaction between the mois-
ture content of adjacent moments [20]. The mechanism of 
change of moisture content in coal is similar to that of soil 
and other substances, which is susceptible to the influence 
of meteorological factors such as temperature and humidity, 
and shows dynamic continuity in the trend of change[21]. 
Thus, by obtaining a large amount of time series data on 
moisture and meteorology, a data-driven prediction model 
for coal moisture content can be built. This process does not 
require complex statistical or physical equations for a single 
variable, but is based entirely on the learning of a set of pre-
dictors for the variables of interest. Therefore, the technical 
idea of the research on the prediction of moisture content of 
coal stored and transported in open yards is considered in 
conjunction with the characteristics of coal moisture vari-
ability as well as in-depth extraction of the correlation fea-
ture analysis of moisture and meteorological factors [22]. In 
view of this, this paper proposes a machine learning-based 
online monitoring method for coal moisture content, which 
effectively solves the above problems by deep learning.

In this paper, based on deep neural network theory and its 
prediction method, a coal moisture prediction model based on 
the residual nets (ResNets) and bidirectional long short-term 

memory (Bi-LSTM) is proposed. A one-dimensional con-
volution can ensure correct understanding of sequence data 
and better extracting features. A simplified ResNet can pre-
vent a deep CNN from overfitting on small-scale datasets, 
and at the same time avoid the negative impact of redundant 
convolutional layers [23]. Bi-LSTM can learn the effect of 
both antecedent and postcedent sample features on the cur-
rent time step [24]. The attention mechanism can further 
strengthen the key information in the time series by redistrib-
uting the weight of each time step’s output [25]. The model 
combines one-dimensional ResNet, Bi-LSTM and attention 
mechanism, incorporating the feature extraction capability 
of CNN and the time-series feature memory capability of 
Bi-LSTM, to achieve the trend prediction of water content of 
coal in open dumps by training the model using multi-source 
data such as meteorological conditions in a specific region.

The rest of this paper is organized as follows. The archi-
tecture of our proposed methodology is presented in Sec-
tion 2. Section 3 describes the experimental setup and evalu-
ation metrics, as well as the analysis and discussion of the 
experimental results. Finally, Section 4 summarizes our 
conclusions.

2 � ABRM: An Attention‑based Bidirectional 
ResNet‑LSTM Model

In order to enable the network model to correctly understand 
the serial data and extract its key features, this paper con-
structs a time series data consisting of two parts: meteoro-
logical features and coal moisture content features. Based 
on the data feature extraction capability of the CNN and the 
contextual association capability of long short-term mem-
ory (LSTM), we propose an attention-based bidirectional 
ResNet-LSTM model (ABRM). The network structure of 
the ABRM is shown in Fig. 1. The model consists of input 
layer, one-dimensional convolution layers, Bi-LSTM layer, 
attention layer, and output layer. The residual convolution 
layer is composed of one-dimensional-convolution-based 
ResNet to accomplish feature extraction; this is described 
in detail in Section 2.1. The recurrent layers and attention 
layers together perform the sequence prediction task, which 
is described in detail in Sections 2.2 and 2.3.

2.1 � Convolutional Neural Network

The CNN is one of the most important core technologies in the 
field of computer vision (CV). It is a neural network structure 
composed of multiple convolutional layers, which have the 
characteristics of sparse interaction, parameter sharing, and 
equivalent representation. When performing image processing 
tasks, the input data of a CNN are a matrix of image pixels so 
that its pixel points in each direction have essentially the same 
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correlation with each other. While using the time series data 
as the input of the CNN, the sequence step length is usually 
taken as the width, the number of features as the height, and 
each feature value as the pixel point value. Assuming that the 
sequence step size is n and the number of features is d, the 
input to the CNN forms an n × d matrix. It is obvious that 
the input sequences are not equally correlated in different 
directions. In this study, a 1D CNN is used to ensure that the 
model understands the data correctly while making the width 
of the convolution kernel equal to the number of features of 
the sample points. With the top-down sliding convolution of 
the convolution kernel, the features and interrelationships of 
each time step can be extracted efficiently.

When the CNN is deep and the size of the dataset is not 
huge, the overfitting problem is easily triggered. ResNet can 
avoid this and has shown excellent performance [23]. Moreo-
ver, ResNet adds identity mapping between different convo-
lutional layers so that the information in the network can flow 
across layers, ensuring that the model does not suffer from 
increasing errors as the depth of the network increases. In 
other words, the deep network has the possibility to transform 
autonomously into a shallow network, thereby avoiding the 
negative effects of redundant convolutional layers. Figure 2 
shows the structure of the basic residual unit in ResNet. The 
calculation of the residual unit is as follows:

where xl is the identity mapping part; F
(
xl,

{
Wl

})
 is the 

residual mapping part, which is composed of two layers of 
convolution (see Fig. 2). xl+1 is the output of the residual unit.

2.2 � Bidirectional Long Short‑term Memory 
(Bi‑LSTM)

LSTM is an important technique in Natural Language Pro-
cessing (NLP) [26] and solves the gradient vanishing or 

(1)xl+1 = xl + F
(
xl,

{
Wl

})
.

exploding problems that may occur in traditional Recur-
rent Neural Networks (RNNs) when processing longer 
sequences. The LSTM was designed with three gate 
structures: the forget gate, update gate (input gate), and 
output gate. Through the weighting of the input vector by 
these three gates, LSTM can selectively extract the ante-
cedent information, and better understand and preserve 
the global information to accomplish more accurate pre-
diction. Therefore, LSTM has been widely used in tasks 
such as speech recognition, sentiment analysis, and text 
analysis. Bidirectional LSTM can read the sequence data 
in the reverse direction for re-learning. The final output of 
Bi-LSTM is determined by forward and reverse learning. 
This structure further ensures the backward and forward 
correlation of the sequence prediction results. Therefore, 

Fig. 1   Network structure of the ABRM

Fig. 2   Structure of the residual unit
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in some tasks, Bi-LSTM will perform better than LSTM. 
Taking the input time step t as an example, the specific 
computational flow of the Bi-LSTM is as follows.

(1)	 The output ht−1 of the previous time step and the input 
xt of the current time step are combined, and sent to the 
forget gate for selective forgetting:

where ft is the output of the forget gate, � represents the 
Sigmoid activation function, Wxf  and Whf  are the weights 
assigned to xt and ht−1 by the forget gate, respectively, and 
bf  is the bias of the forget gate.

(2)	 The stitching vectors of xt and ht−1 are selectively mem-
orized through the input gate as shown in Eq. 3. Mean-
while, xt and ht−1 are scaled by the activation function 
tanh to produce the candidate memory cell c̃t that stores 
the information of the current time step, as shown in 
Eq. 4.

Here, it is the output of the input gate, Wxi and Whi 
are the weights assigned to xt and ht−1 by the input gate, 
respectively, and bi is the bias of the input gate.

(3)	 The contents of the antecedent memory cell ct−1 are 
updated by deciding which new information in the cur-
rent candidate memory cell c̃t will be stored; the latest 
memory cell ct is obtained as follows:

(4)	 The output gate determines what information should be 
included in the output state ot of the current stage:

	 
where ot is the output of the output gate, Wxo and Who 
are the weights assigned to xt and ht−1 by the output 
gate, respectively, and bo is the bias of the output gate.

(5)	 The output value ht of LSTM is obtained by calculating 
the output ot of the output gate and the state ct of the 
current cell, as follows:

(2)ft = �
(
Wxf xt +Whf ht−1 + bf

)
,

(3)it = �
(
Wxixt +Whiht−1 + bi

)
,

(4)c̃t = tanh
(
Wxcxt +Whcht−1 + bc

)
.

(5)ct = ft ∗ ct−1 + it ∗ c̃t.

(6)ot = �
(
Wxoxt +Whoht−1 + bo

)
,

(7)ht = ot ∗ tanh
(
ct
)
.

(6)	 Bi-LSTM adds an inverse learning cell. It will combine 
the forward and backward outputs of the LSTM cell as 
the final output based on the above operations:

	 
where ⊕ is the summation operation, ��⃗ht is the output 
of the forward LSTM cell, �⃖�ht is the output of the cor-
responding backward cell, and ht is the final output.

The LSTM cell structure is shown in Fig. 3, and the Bi-
LSTM model structure is shown in the orange part of the 
recurrent layer in Fig. 1.

2.3 � Attention‑based Model

The attention mechanism was proposed in 2014 and has 
achieved great success in machine translation [25]. In recent 
years, attention mechanisms have been widely used in vari-
ous different types of deep learning tasks such as NLP [27] 
and image recognition [28] and have become one of the 
most interesting and insightful approaches in the DL field. 
In a representative study in 2017, the Google Brain team 
abandoned the classic RNN/CNN structure and proposed a 
transformer model composed of only the attention mecha-
nism [29].

The attention mechanism is able to redistribute the input 
weights, thus enabling the selection of information that is 
more critical to the current task goal from among the many 
pieces of information. In the model of the present paper, the 
attention mechanism assigns different weights to the output [
h1, h2,⋯ , ht,⋯ , hT

]
 of LSTM units, enabling the model to 

give different levels of attention to different time steps in the 
sequence. Taking the output time step t as an example, the 
specific calculation process is as follows.

(8)ht =
[
�⃗ht ⊕

�⃖ht

]
,

Forget gate Update gate Output gate

Tanh

Tanh

tx

1th

tc

ty

th

-1tc

tf ti tc to

Fig. 3   LSTM cell
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(1)	 When the Bi-LSTM model produces a hidden output 
ht at time step t, it is given a weight W� to obtain ut as 
follows:

(2)	 The importance of the current time step ut is then cal-
culated using the similarity between ut and u� , and is 
normalized to obtain �t:

	 
where u� denotes the context vector, which is randomly 
initialized and jointly learned in the training phase.

(3)	 Finally, by weighted summation of these weights �t , the 
comment vector S is summarized. This vector summa-
rizes the information of all time steps in the sequence:

The attention structure is shown in the attention layer in 
Fig. 1.

3 � Experimental Process and Analysis Results

In this section, we first introduce the experimental datasets, 
and discuss the parameter settings and evaluation metrics. 
Finally, we compare the proposed ABRM model with several 
other advanced algorithms. All of the experimental results 
originate from the proposed algorithm which is performed 
50 times independently and the average value is obtained.

3.1 � Description of Datasets

In this experiment, the data of moisture content of the coal 
stack surface as well as the meteorological statistics from 
on-site weather stations were sampled hourly during June 
to August 2020, October to December 2020, and January 
to April 2021 at Huanghua Port coal stockpile in Hebei 
Province, China (As shown in Figs. 4 and 117°48’46 “E, 
38°18’52 “N). The coal moisture content was obtained by 
the drying method. The drying was done by maintaining 
a constant temperature of 80 °C in a vacuum for 120 min. 
Real-time meteorological data were obtained from the near-
est weather monitoring stations distributed within the coal 
yard to the stacks. The meteorological data contained four 
characteristics: temperature, air humidity, air pressure, and 
wind speed. We integrated the moisture content data and 
meteorological data by time consistency, and eliminated the 
anomalous data, and finally retained 4350 valid data records. 

(9)ut = tanh
(
W�ht + b�

)
.

(10)�t =
exp(uTt u�)∑
texp(u

T
t u�)

,

(11)S =
∑

t �tht.
The valid data were divided into sequences using the sliding 
window method, and a total of 2004 sequences of length 5 
were generated. The sample data contained five character-
istics: temperature, air humidity, air pressure, wind speed, 
and moisture content at the previous moment. The current 
moment moisture content was used as the label. By compar-
ing other deep learning application cases, the amount of data 
obtained in this experiment can provide reliable support for 
the training of prediction models for a single coal species 
[22]. Finally, the ratio of number of training set samples to 
that of test set samples was set to 5:1. Partial sample data 
are shown in Table 1. Table 2 shows the minimum (Min), 
maximum (Max), mean (Mean), and standard deviation (SD) 
of each variable of the dataset, including training set and test 
set. Because the data was collected in distinct seasons, the 
variation is large in meteorological data, especially for tem-
perature and humidity. The observed values of coal moisture 
content and the fluctuation values are small, in the range of 
[0.90%, 27.00%].

3.2 �           Model Parameters and Experimental 
Environment

The parameter settings of the ABRM for this experiment are 
shown in Table 3.

According to the parameter setting of ABRM, we can 
know the operation process of the model as follows: the 
input training dataset is a three-dimensional data vector 
(batchsize, 5, 5), in which the parameters in parentheses 
represent batch size, time step and feature size, respec-
tively. First, the data enter a 1D convolutional layer with 
a residual structure to extract features and obtain a 3D 
output vector (batchsize, 5, 128), in which the number 
of output channels is 128. Next, the vector enters the 

Fig. 4   Experimental scene of sprinkling operation in coal storage 
yard of Huanghua Port
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max-pooling layer, which does not change the vector size, 
and a 3D output vector (batchsize, 5, 128) is obtained. 
Then, the output vector enters the Bi-LSTM layer and 
the attention layer for training, and the output vector 
(batchsize, 32) is obtained, where 32 is the hidden size 
of the Bi-LSTM. Finally, the output vector of Bi-LSTM 
is interpreted by the fully connected layer to obtain the 
output value. Dropout was added to the LSTM layer to pre-
vent overfitting [30]. Training was completed for 10,000 
epochs, and the learning rate decayed to 1/10 of the previ-
ous rate for every 2,500 epochs that passed.

The training environment of the model was a graphics 
workstation, which was configured with CPU: Intel (R) 
Xeon (R) CPU 4210R*2@3.20 GHz, GPU: Nvidia Geforce 
RTX3080 and RAM: 64GB. The Anaconda platform was 
adopted as the basic platform for deep learning training, 
pytorch (version 1.6.0) was the deep learning framework, 
CUDA technology was used to realize parallel computing. 
The Python version was 3.7.

3.3 � Evaluation Metrics

In order to validate and evaluate the performance of the 
model, five evaluation metrics are used in this paper: 
the mean squared error (MSE), root mean squared error 
(RMSE), mean absolute error (MAE), correlation coef-
ficient (R-squared, R2), and mean absolute percentage 
error (MAPE). These evaluation metrics have been widely 
used in prediction tasks. The formulae of these metrics are 
expressed as follows:

(12)MSE =
1

N

N∑
i=1

�
yPred − y

�2
, >

Table 1   Partial sample data Temperature [°C] Humidity [%] Atmospheric 
pressure 
[kPa]

Wind 
velocity 
[m/s]

Coal moisture content 
in the previous hour 
[%]

Coal moisture con-
tent of current [%]

23.79 101.51 100.9 2.27 14.80 12.70
23.93 102.33 100.89 1.51 12.70 12.50
24.54 100.23 100.8 1.92 12.50 12.30
24.77 91.01 100.8 1.9 12.30 11.20
25.22 81.72 100.8 2.09 11.20 10.70
25.59 79.07 100.75 1.95 10.70 9.10
25.52 83.58 100.71 1.89 9.10 7.15
25.4 87.47 100.75 1.48 7.15 5.20
25.25 87.66 100.7 1.12 5.20 4.42
25.18 92.63 100.7 0.94 4.42 3.76
24.92 94.3 100.71 0.93 3.76 3.19
24.34 100.46 100.8 1.61 2.71 2.31

Table 2   Statistical analysis results of each variable

Variable Unit Min Max Mean SD

Temperature °C -15.75 34.91 12.18 12.91
Humidity % 12.17 119.28 93.97 24.62
Atmospheric pressure kPa 99.80 104.10 102.14 1.31
Wind velocity m/s 0.41 7.56 2.48 1.13
Coal moisture content % 0.90 27.00 6.84 4.57

Table 3   Parameter setting of ABRM

Parameter Value

Number of convolution layer filters 15
Convolution layer kernel size 3
Convolution layer activation function ReLU
Convolution layer padding 1
Pooling layer pool size 1
Pooling layer padding None
Pooling layer activation function ReLU
Number of hidden units in LSTM layer 16
Number of LSTM layers 2
LSTM layer activation function tanh
Dropout 0.3
Time step 5
Batch size 2
Learning rate 0.01(*0.1 

every 2500 
epochs)

Optimizer Adam
Loss function MSE Loss
Number of epochs 10,000
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Here, N is the sample size of the test set. yPred is the pre-
dicted value, and y is the true value. 

−
y is the average of the 

true values of all samples in the test set.
Among the above indicators, the closer the value of R2 

is to 1, the better discriminating the model is. The closer 
the values of MAE, RMSE, MAE, and MAPE are to 0, the 
higher the prediction accuracy.

3.4 � Comparing Performance of Different Models

In this section, six models, SVM, RNN, LSTM, CNN, 
A-LSTM (attention-based LSTM), and simple CNN-
LSTM (without residual unit and attention mechanism), 
were selected for comparison and analysis with the pro-
posed ABRM. The selected models include traditional 
ML models, common recurrent/convolutional neural net-
work models, and combined models of neural networks. 
These have been applied to various sequence data pre-
diction tasks and have achieved satisfactory results. We 
trained each model with the same training dataset and 
parameters. After the training, the models were tested 
using the same test dataset. The prediction accuracy of 
each model for coal moisture content was evaluated by 
comparing the predicted values with the observed values 
for the next 1 h.

Table 4 shows the results of prediction accuracy com-
parison between the ABRM and other models. In this 
experiment, the R2 and MAE scores are particularly 
important to indicate the performance of the model. R2 is 
used to detect the degree of fit of each prediction model 
to the observed moisture content of the samples; MAE 
reflects the deviation of the observed moisture content 
of all individual samples from the arithmetic mean in the 
experiment. MAE intuitively reflects the magnitude of 
the actual prediction error. The results in Table 4 show 
that the R2 and MAE scores of the ABRM model pro-
posed in this paper are 0.9971 and 0.0812 (boldfaced 
in Table 4), respectively, which are significantly better 

(13)RMSE =

�
1

N

N∑
i=1

���yPred�� − �y�
�2
,

(14)MAE =
1

N

N∑
i=1

��yPred�� − �y�,

(15)R2 = 1 −
∑N

i=1(yPred−y)
2

∑N

i=1

�−
y−y

�2 ,

(16)MAPE =
100%

N

N∑
i=1

���
yPred−y

y

���.

than the performance metrics of other models. In addi-
tion, the performance of MSE, RMSE and MAPE met-
rics of ABRM also outperformed other models, reaching 
0.0528, 0.2299 and 1.6117, respectively.

Figure 5 demonstrates the predicted and observed 
values of coal moisture content for model. For better 
comparison, we label the R2 scores of each model in 
red text. It is apparent from this figure that the fitting 
ability of the model improves to different degrees as 
the complexity of the model increases. The R2 score of 
both the simple CNN-LSTM model and ABRM in this 
paper exceeds 0.99. The ABRM proposed in this paper 
performs relatively better, with an R2 score of 0.9971 
and achieving a satisfactory fitting effect (Fig. 5(g)). It 
can be seen that the feature extraction capability of the 
CNN and the sequence prediction capability of LSTM 
are fully utilized in the coal moisture content predic-
tion task. It is worth noting that in Fig. 5(g), there are 
2 obvious anomalies, which appear at 4% and 14%, 
respectively, also in (a) to (f). By querying the dataset, 
it was found that these 2 anomalies were caused by 
sudden changes in meteorological parameters due to 
the occurrence of short-term strong convective weather 
at the experimental site. This indicates that the model 
proposed in this paper is less capable of handling such 
changes. However, the model is able to capture the 
smoother meteorological changes very well. In other 
words, in most cases, the predicted values of moisture 
content output by the model can be trusted and guide 
industrial production.

In addition, we conducted a comparative analysis of 
the absolute errors of the predicted values of each model 
and plotted the error distribution in Fig. 6. The mean 
absolute error (MAE) scores of each model are labeled 
in each sub-figure, and the points inside the horizontal 
black dashed line are the prediction points with abso-
lute errors in the range of [-2,2]. Although most of the 
models are basically able to control the absolute error 
within the range of [-2,2].

Table 4   Results of prediction accuracy comparison between the 
ABRM and other models

Models MSE RMSE MAE R2 MAPE

SVM 7.2537 2.6933 1.2535 0.6024 34.0171
RNN 0.9048 0.9512 0.6103 0.9504 17.6118
LSTM 0.6806 0.825 0.4783 0.9627 14.1196
CNN 0.4200 0.6481 0.3447 0.977 10.4491
 A-LSTM 0.3404 0.5834 0.321 0.9813 9.6539

CNN-LSTM 0.1375 0.3708 0.1643 0.9925 3.6014
ABRM 

(proposed 
model)

0.0528 0.2299 0.0812 0.9971 1.6117
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Table 4 summarizes the comparison results of predic-
tion accuracy between the ABRM and other models. The 
range of moisture content is only [0.9,27] and the SD is 
only 4.57, that is, the absolute error range of [-2,2] does 
not meet the requirements of long-term guiding production. 

Comparatively, ABRM can control most of the errors within 
the range of [-0.5,0.5], and the prediction performance is 
more superior.

Figure 7 further illustrates the predicted values of the 
ABRM on the test set compared to actual values. Different 

Fig. 5   Comparison of the predicted and observed values of the SVM, RNN, LSTM, CNN, A-LSTM, CNN-LSTM, and ABRM models
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sequences of testing data and their corresponding predic-
tion curves are put in the same plot. In Fig. 7, the majority 
of ABRM prediction curves marked in green highly overlap 
with real observation marked in red, showing good gener-
alization capability of the model.

In summary, we find that the ABRM constructed in this 
paper has relatively optimal prediction performance. The 
model structure ensures that the neural network correctly 
understands the sequence data and extracts key features, 
while structurally suppressing the overfitting issue to ensure 
the network’s robustness against perturbations.

Fig. 6   Absolute error analysis of the SVM, RNN, LSTM, CNN, A-LSTM, CNN-LSTM, and ABRM models
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4 � Conclusions

In this paper, an ABRM model structure for predicting 
the moisture content of coal in the surface layer of coal 
stacks is proposed. The model combines ResNet based 
on one-dimensional convolution and Bi-LSTM based on 
attention mechanism. It fuses the ResNet feature extrac-
tion ability and the time series feature memory ability 
of Bi-LSTM. The sample features extracted by ResNet 
are used as the input sequence of LSTM for learning 
to obtain the final prediction results. The experimen-
tal results show that the ABRM model proposed in this 
paper outperforms common regression prediction mod-
els in terms of prediction accuracy and convergence 
rate. The proposed model scores better than other mod-
els in all evaluation metrics. Excellent performance is 
achieved in predicting the moisture content of coal in 
the surface layer of coal stacks. The high precision coal 
moisture content prediction value provides an important 
reference for the coal storage and transportation man-
agement system of coal storage base, which eases the 
management work for dust-suppression sprinkling and 
spontaneous combustion prevention.

Future work can incorporate light intensity, coal type, etc. 
into the data feature set to improve the prediction stability of 
the model. It is meaningful to develop a multi-task learning 
algorithm to further predict the change in coal moisture con-
tent for several hours by predicting the change in meteorologi-
cal parameters for several hours in the future. In addition, this 
method can be applied to most natural minerals, such as sand 
and dirt whose moisture content is influenced by the environ-
ment. It is hoped that interested scholars will verify it in future 
experiments.
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