Skip to main content

Advertisement

Log in

Evaluating and Optimizing Feature Combinations for Visual Loop Closure Detection

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Loop closure detection (LCD) is a key step in visual simultaneous localization and mapping systems to correct the map and relocalize the vehicle. However, it may fail when illumination variations and shifting dynamics present in the scenes. One way to improve the precision is to effectively combine multiple image features that supply complementary information. In this paper, a general method to quantitatively measure the efficacy of individual image features as well as feature combinations for LCD is proposed by calculating the statistical distance considering the distributions of feature vectors. Based on different statistical distances including Kullback-Leibler divergence, Bhattacharyya divergence and Wasserstein metric, various numerical indices capable of evaluating feature combinations are obtained and compared. An unsupervised algorithm is further proposed to optimize feature combinations by maximizing any of the indices. Experiments show that the proposed indices can measure the efficacies of image features and the resulting feature combinations maximizing the indices can improve the precision of LCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. IEEE Robot. Autom. Mag. 18 (4), 80–92 (2011)

    Article  Google Scholar 

  2. Valgren, C., Lilienthal, A.J.: Sift, surf and seasons: Long-term outdoor localization using local features. In: European Conference on Mobile Robots (ECMR), pp. 253–258 (2007)

  3. Liu, Y., Zhang, H.: Visual loop closure detection with a compact image descriptor. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1051–1056. IEEE (2012)

  4. Campos, F.M., Correia, L., Calado, J.M.: Loop closure detection with a holistic image feature. In: Portuguese Conference on Artificial Intelligence, pp. 247–258. Springer (2013)

  5. Sünderhauf, N., Protzel, P.: Brief-gist: Closing the loop by simple means. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1234–1241. IEEE (2011)

  6. Arroyo, R., Alcantarilla, P.F., Bergasa, L.M., et al.: Bidirectional loop closure detection on panoramas for visual navigation. In: IEEE Intelligent Vehicles Symposium, pp. 1378–1383. IEEE (2014)

  7. Wang, X., Zhang, H., Peng, G.: A chordiogram image descriptor using local edgels. J. Vis. Commun. Image R. 49, 129–140 (2017)

    Article  Google Scholar 

  8. Sünderhauf, N., Shirazi, S., Dayoub, F., et al.: On the performance of convnet features for place recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4297–4304. IEEE (2015)

  9. Wang, X., Peng, G., Zhang, H.: Combining multiple image descriptions for loop closure detection. J. Intell. Robot. Syst. 92(3), 565–585 (2018)

    Article  Google Scholar 

  10. Cummins, M., Newman, P.: Probabilistic appearance based navigation and loop closing. In: 2007 IEEE International Conference on Robotics and Automation (ICRA), pp. 2042–2048. IEEE (2007)

  11. Angeli, A., Doncieux, S., Meyer, J.A., Filliat, D.: Real-time visual loop-closure detection. In: 2008 IEEE International Conference on Robotics and Automation (ICRA), pp. 1842–1847. IEEE (2008)

  12. Angeli, A., Filliat, D., Doncieux, S., Meyer, J.A.: Fast and incremental method for loop-closure detection using bags of visual words. IEEE Trans. Robot. 24(5), 1027–1037 (2008)

    Article  Google Scholar 

  13. Cummins, M., Newman, P.: Fab-map: Probabilistic localization and mapping in the space of appearance. Int. J. Rob. Res. 27(6), 647–665 (2008)

    Article  Google Scholar 

  14. Milford, M.J., Wyeth, G.F.: Seqslam: Visual route-based navigation for sunny summer days and stormy winter nights. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 1643–1649. IEEE (2012)

  15. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  16. Engel, J., Schöps, T., Cremers, D.: Lsd-slam: Large-scale direct monocular slam. In: European Conference on Computer Vision, pp. 834–849. Springer (2014)

  17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60 (2), 91–110 (2004)

    Article  Google Scholar 

  18. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  19. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  Google Scholar 

  20. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  21. Calonder, M., Lepetit, V., Ozuysal, M., et al.: Brief: Computing a local binary descriptor very fast. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1281–1298 (2012)

    Article  Google Scholar 

  22. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)

  23. Toshev, A., Taskar, B., Daniilidis, K.: Shape-based object detection via boundary structure segmentation. Int. J. Comput. Vis. 99(2), 123–146 (2012)

    Article  MathSciNet  Google Scholar 

  24. Perronnin, F., Dance, C.R.: Fisher kernels on visual vocabularies for image categorization. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2007)

  25. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3304–3311 (2010)

  26. Arandjelovic, R., Zisserman, A.: All about vlad. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1578–1585 (2013)

  27. Hou, Y., Zhang, H., Zhou, S.: Convolutional neural network-based image representation for visual loop closure detection. In: 2015 IEEE International Conference on Information and Automation, pp. 2238–2245. IEEE (2015)

  28. Li, Q., Li, K., You, X., et al.: Place recognition based on deep feature and adaptive weighting of similarity matrix. Neurocomputing 199, 114–127 (2016)

    Article  Google Scholar 

  29. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  30. Gu, Q., Li, Z., Han, J.: Generalized fisher score for feature selection. In: Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI’11, pp 266–273. AUAI Press, Arlington (2011)

  31. Loog, M., Duin, R.P.W., Haeb-Umbach, R.: Multiclass linear dimension reduction by weighted pairwise fisher criteria. IEEE Trans. Pattern Anal. Mach. Intell. 23(7), 762–766 (2001)

    Article  Google Scholar 

  32. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J Mach. Learn. Res. 3(Mar), 1157–1182 (2003)

    MATH  Google Scholar 

  33. Kuncheva, L.I.: Combining pattern classifiers: Methods and algorithms. Wiley (2004)

  34. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Article  Google Scholar 

  35. Campos, F.M., Correia, L., Calado, J.M.: Robot visual localization through local feature fusion: An evaluation of multiple classifiers combination approaches. J. Intell. Robot. Syst. 77(2), 377–390 (2015)

    Article  Google Scholar 

  36. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Statist. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  37. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta Math. Soc. 35, 99–109 (1943)

    MathSciNet  MATH  Google Scholar 

  38. Van Erven, T., Harremos, P.: Rényi divergence and kullback-leibler divergence. IEEE Trans. Inf. Theory 60(7), 3797–3820 (2014)

    Article  Google Scholar 

  39. Gil, M., Alajaji, F., Linder, T.: Rényi divergence measures for commonly used univariate continuous distributions. Inf. Sci. 249, 124–131 (2013)

    Article  Google Scholar 

  40. Crysandt, H.: Linear feature vector compression using Kullback-Leibler distance. In: 2006 IEEE International Symposium on Signal Processing and Information Technology, pp. 556–561. IEEE (2006)

  41. Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2911–2918. IEEE (2012)

  42. Choi, E., Lee, C.: Feature extraction based on the Bhattacharyya distance. Pattern Recognit. 36(8), 1703–1709 (2003)

    Article  Google Scholar 

  43. Levina, E., Bickel, P.: The earth mover’s distance is the mallows distance: Some insights from statistics. In: 2001 IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 251–256. IEEE (2001)

  44. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  Google Scholar 

  45. Qiu, K., Ai, Y., Tian, B., et al.: Siamese-resnet: Implementing loop closure detection based on siamese network. In: IEEE Intelligent Vehicles Symposium, pp. 716–721 (2018)

  46. Chen, Z., Liu, L., Sa, I., et al.: Learning context flexible attention model for long-term visual place recognition. IEEE Robot. Autom. Lett. 3(4), 4015–4022 (2018)

    Article  Google Scholar 

  47. Zhang, H., Han, F., Wang, H.: Robust multimodal sequence-based loop closure detection via structured sparsity. In: Proceedings of Robotics: Science and Systems. AnnArbor (2016)

  48. Ho, K.L., Newman, P.: Detecting loop closure with scene sequences. Int. J. Comput. Vis. 74 (3), 261–286 (2007)

    Article  Google Scholar 

  49. Corporation, T.N.B.: The nordlandsbanen dataset. http://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute-season-by-season/http://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute-season-by-season/ (2013)

  50. Glover, A.J., Maddern, W.P., Milford, M.J., Wyeth, G.F.: Fab-map+ratslam: Appearance-based slam for multiple times of day. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3507–3512. IEEE (2010)

  51. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  52. Paszke, A., Gross, S., Massa, F., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc (2019)

  53. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 2169–2178. IEEE (2006)

  54. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240. ACM (2006)

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (No. GK202103008).

Author information

Authors and Affiliations

Authors

Contributions

Xiaolong Wang did the research and made the manuscript. Hong Zhang and Guohua Peng are his supervisors, providing suggestions and assistances in this study.

Corresponding author

Correspondence to Xiaolong Wang.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix:

Appendix:

1.1 A.1 Proof of the Assertions in Section ??

Suppose that there are two features h = [h1,h2]T with the statistics

$$ \boldsymbol s = \left[ \begin{array}{c} s_{1} \\ s_{2} \end{array}\right], \boldsymbol {\varSigma}= \left[ \begin{array}{cc} {\sigma_{1}^{2}} & \rho\sigma_{1}\sigma_{2}\\ \rho\sigma_{1}\sigma_{2} & {\sigma_{2}^{2}} \end{array} \right] $$
(1)

where s1 and s2 are positive and the correlation coefficient ρ < 1.

  1. 1.

    Suppose that D[h2] > D[h1], then

    $$ D[h_{2}]=\frac{{s_{2}^{2}}}{{\sigma_{2}^{2}}}>\frac{{s_{1}^{2}}}{{\sigma_{1}^{2}}}=D[h_{1}] $$
    (2)

    and equivalently, s2/s1 > σ2/σ1. Therefore

    $$ \left( 1+\frac{s_{2}}{s_{1}}\right)^{2}>\left( 1+\frac{\sigma_{2}}{\sigma_{1}}\right)^{2}>1+\left( \frac{\sigma_{2}}{\sigma_{1}}\right)^{2}+2\rho\frac{\sigma_{2}}{\sigma_{1}} $$
    (3)

    and equivalently,

    $$ D[h_{1}+h_{2}]=\frac{(s_{1}+s_{2})^{2}}{{\sigma_{1}^{2}}+{\sigma_{2}^{2}}+2\rho\sigma_{1}\sigma_{2}}>\frac{{s_{1}^{2}}}{{\sigma_{1}^{2}}}=D[h_{1}]. $$
    (4)
  2. 2.

    The optimal weight vector maximizing (??) is [9]

    $$ \boldsymbol w^{*}=\left[ \begin{array}{c} w_{1}^{*} \\ w_{2}^{*} \end{array}\right] \propto \boldsymbol{\varSigma}^{-1}\boldsymbol s\propto \left[ \begin{array}{c} d_{1}-\rho d_{2} \\ \lambda d_{2} -\rho\lambda d_{1} \end{array}\right] $$
    (5)

    where \(d_{1}= \sqrt {D[h_{1}]}\), \(d_{2}=\sqrt {D[h_{2}]}\) and λ = σ1/σ2. We define the ratio

    $$ k = \frac{w_{1}^{*}}{w_{1}^{*}+w_{2}^{*}}=\frac{d_{1}-\rho d_{2}}{d_{1}+rd_{2}-\rho(rd_{1}+d_{2})}. $$
    (6)

    A direct calculation shows that the sign of k/D[h1] and k/ρ are the same as 1 − ρ2 and D[h1] − D[h2], respectively. Therefore k/D[h1] > 0 always holds and k/ρ > 0 if and only if D[h1] > D[h2].

1.2 A.2 Jacobian of FEIs

The Jacobian of D(w) in Eq. ?? is

$$ \frac{d D}{d\boldsymbol w}= \frac{2\boldsymbol w^{\text{T}}\boldsymbol s}{(\boldsymbol w^{\text{T}} \boldsymbol {\varSigma} \boldsymbol w)^{2}}[(\boldsymbol w^{\text{T}} \boldsymbol {\varSigma} \boldsymbol w) \boldsymbol s - (\boldsymbol w^{\text{T}}\boldsymbol s) \boldsymbol {\varSigma} \boldsymbol w]. $$
(7)

This type of FEIs includes DFS, DLR, the first part g1 of Dα according to Eq. ?? and the first part of DWS according to Eq. ??.

The Jacobian of the second part g2 of Dα(w) can be deduced from Eq. ??,

$$ \frac{d g_{2}}{d\boldsymbol w}=\frac{d g_{2}}{d r_{\sigma}^{2}}\frac{d r_{\sigma}^{2}}{d \boldsymbol w}=\frac{r_{\sigma}^{2}-1}{r_{\sigma}^{2}(\upbeta r_{\sigma}^{2}+\alpha)}\frac{2({\sigma_{F}^{2}}\boldsymbol {\varSigma}_{T}-{\sigma_{T}^{2}}\boldsymbol {\varSigma}_{F})\boldsymbol w}{{\sigma_{F}^{4}}}. $$
(8)

For ∥w∥ = 1, the Jacobian of the second part of DWS(w) can be deduced from Eq. ??,

$$ \frac{d}{d\boldsymbol w}\frac{\Delta \sigma^{2}}{\Vert\boldsymbol w \Vert^{2}}=2(\sigma_{F}-\sigma_{T})\left( \frac{\boldsymbol {\varSigma}_{F}}{\sigma_{F}}-\frac{\boldsymbol {\varSigma}_{T}}{\sigma_{T}}\right)\boldsymbol w-2{\Delta} \sigma^{2}\boldsymbol w. $$
(9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, H. & Peng, G. Evaluating and Optimizing Feature Combinations for Visual Loop Closure Detection. J Intell Robot Syst 104, 31 (2022). https://doi.org/10.1007/s10846-022-01575-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01575-7

Keywords