Skip to main content
Log in

Experimental Verification of the Differential Games and H Theory in Tracking Control of a Wheeled Mobile Robot

  • Short paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents an experimental verification understood as an extension of the existing solutions for the application of the differential games theory in real-time control of a nonholonomic, nonlinear dynamic system, on the example of a wheeled robot. Based on the dissipative systems theory, the solution to the problem of weakening the impact of disturbances and changing working conditions of a mobile robot was obtained using the H (L2 gain) control theory. The neural solution of the Hamilton-Jacobi-Isaac equation in the actor-critic structure was applied. Both simulation and experiment result showed very good quality in the wheeled robot tracking control problem taking into account the changing working conditions and other disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code Availability

Not applicable.

References

  1. van der Schaft, A.J.: L2-gain analysis of nonlinear systems and nonlinear state feedback Hinf control. IEEE Trans. Automat. Contr. 37(6), 770–784 (1992)

    Article  Google Scholar 

  2. Aschepkov, L.T., Dolgy, D.V., Kim, T., Agarwal, R.P.: Optimal control, vol. 246, p. 2018. Springer International Publishing AG (2016)

    Book  Google Scholar 

  3. Frank, L., Lewis, L., Vrabie, D., Syrmos, V.L.: Optimal control. John Wiley & Sons (2012)

    MATH  Google Scholar 

  4. Abu-Khalaf, M., Huang, J., Lewis, F.L.: Nonlinear H2 Hinf Constrained Feedbacka Control. Springer-Verlag London (2006)

    Google Scholar 

  5. Kiumarsi, B., Vamvoudakis, K.G., Modares, H., Lewis, F.L.: Optimal and autonomous control using reinforcement learning: a survey. IEEE Trans. Neural Networks Learn. Syst. 29(6), 2042–2062 (2018)

    Article  MathSciNet  Google Scholar 

  6. Wang, D.L.D., He, H.: Adaptive Critic Nonlinear Robust Control: A Survey. IEEE Trans. Cybern.

  7. Fu, Y., Chai, T.: Online solution of two-player zero-sum games for continuous-time nonlinear systems with completely unknown dynamics. IEEE Trans. Neural Networks Learn. Syst. 27(12), 2577–2587 (2015)

    Article  MathSciNet  Google Scholar 

  8. Liu, D., Wei, Q., Wang, D., Yang, X., Li, H.: Adaptive Dynamic Programming with Applications in Optimal Control. Springer, Advances in Industrial Control (2017)

    Book  Google Scholar 

  9. Wang, F.-Y., Zhang, H., Liu, D.: Adaptive Dynamic Programming: An Introduction. IEEE Comput. Intell. Mag. 4(May), 39–47 (2009)

    Article  Google Scholar 

  10. Wu, H.-N., Luo, B.: Neural network based online simultaneous policy update algorithm for solving the HJI equation in nonlinear Hinf control. IEEE Trans. Neural Networks Learn. Syst. 23(12), 1884–1895 (2012)

    Article  Google Scholar 

  11. Szuster, M., Hendzel, Z.: Intelligent Optimal Adaptive Control for Mechatronic Systems. Springer (2018)

    Book  Google Scholar 

  12. Vamvoudakis, K.G., Lewis, F.L.: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica. 46(5), 878–888 (2010)

    Article  MathSciNet  Google Scholar 

  13. Willems, J.C.: Dissipative dynamical systems. Part I: general theory. Arch. Ration. Mech. Anal. 45, 321–351 (1972)

    Article  Google Scholar 

  14. Brogliato, B., Lozano, R., Maschke, B., Egeland, O.: Dissipative Systems Analysis and Control. Springer-Verlag London (2007)

    Book  Google Scholar 

  15. Hill, D.J., Moylan, P.J.: Dissipative dynamical systems: basic input-output and state properties. J. Frankl. Inst. 305(5), 327–357 (1980)

    Article  MathSciNet  Google Scholar 

  16. Yang, X., Gao, Z., Zhang, J.: Event-driven Hinf control with critic learning for nonlinear systems. Neural Netw. 132, 30–42 (2020). https://doi.org/10.1016/j.neunet.2020.08.004

    Article  MATH  Google Scholar 

  17. Dong, B., et al.: Decentralized Robust Optimal Control for Modular Robot Manipulators Based on Zero-Sum Game with ADP. In: International Symposium on Neural Networks, pp. 3–14 (2019)

    Google Scholar 

  18. Modares, H., Lewis, F.L., Jiang, Z.-P.: Hinf tracking control of completely unknown continuous-time systems via off-policy reinforcement learning. IEEE Trans. Neural Networks Learn. Syst. 26(10), 2550–2562 (2015)

    Article  MathSciNet  Google Scholar 

  19. Liu, D., Li, H., Wang, D.: Neural-network-based zero-sum game for discrete-time nonlinear systems via iterative adaptive dynamic programming algorithm. Neurocomputing. 110, 92–100 (2013)

    Article  Google Scholar 

  20. Qin, C., Zhang, H., Wang, Y., Luo, Y.: Neural network-based online Hinf control for discrete-time affine nonlinear system using adaptive dynamic programming. Neurocomputing. 198, 91–99 (2016)

    Article  Google Scholar 

  21. Liu, D., Li, H., Wang, D.: Hinf control of unknown discrete-time nonlinear systems with control constraints using adaptive dynamic programming. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2012)

    Google Scholar 

  22. Hendzel, Z., Penar, P.: Zero-sum differential game in wheeled Mobile robot control. Int. Conf. Mechatronics. 934, 151–161 (2017)

    Google Scholar 

  23. Vamvoudakis, K.G., Lewis, F.L.: Online solution of nonlinear two-player zero-sum games using synchronous policy iteration. Int. J. Robust. Nonlinear Control. 22, 1460–1483 (2012)

    Article  MathSciNet  Google Scholar 

  24. Yasini, S., Sistani, M.B.N., Karimpour, A.: Approximate dynamic programming for two-player zero-sum game related to Hinf control of unknown nonlinear continuous-time systems. Int. J. Control. Autom. Syst. 13(1), 99–109 (2014)

    Article  Google Scholar 

  25. Luo, B., Wu, H.-N., Huang, T.: Off-policy reinforcement learning for Hinf control design. IEEE Trans. Cybern. 45(1), 65–76 (2014)

    Article  Google Scholar 

  26. Zhu, Y., Zhao, D., Li, X.: Iterative adaptive dynamic programming for solving unknown nonlinear zero-sum game based on online data. IEEE Trans. Neural Networks Learn. Syst. 28(3), 714–725 (2016)

    Article  MathSciNet  Google Scholar 

  27. Yasini, S., Karimpour, A., Naghibi Sistani, M.-B., Modares, H.: Online concurrent reinforcement learning algorithm to solve two-player zero-sum games for partially unknown nonlinear continuous-time systems. Int. J. Adapt. Control Signal Process. 29(4), 473–493 (2015)

    Article  MathSciNet  Google Scholar 

  28. Zhao, J., Gan, M., Zhang, C.: Event-triggered Hinf optimal control for continuous-time nonlinear systems using neurodynamic programming. Neurocomputing. 360, 14–24 (2019)

    Article  Google Scholar 

  29. van der Schaft, A.J.: L2-Gain and Passivity Techniques in Nonlinear Control. Springer International Publishing (2017)

    Book  Google Scholar 

  30. Giergiel, J., Żylski, W.: Description of motion of a mobile robot by Maggie’s equations. J. Theor. Appl. Mech. 43(3), 511–521 (2005)

    Google Scholar 

  31. Soderstorm, T., Stoica, P.: System Identification. Prentice-Hall (1989)

    Google Scholar 

  32. Hendzel, Z., Nawrocki, M.: Identification of the parameters of the robot model [in polish]. Acta Mech. Autom. 7(2), 69–73 (2010)

    Google Scholar 

  33. dSPACE, DS1103 PPC Controller Board. RTLib Reference. Padeborn: dSpace GmbH (2009)

  34. dSPACE, Real-Time Interface (RTI and RTI-MP). Implementation Reference. Padeborn: dSpace GmbH (2010)

  35. dSPACE, DS1103 PPC Controller Board. Hardware Installation and Configuration. Padeborn: dSpace GmbH (2010)

Download references

Author information

Authors and Affiliations

Authors

Contributions

Penar Paweł and Zenon Hendzel contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Paweł Penar.

Ethics declarations

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

The submitted work is original and not have been published elsewhere in any form or language.

Consent to Publish

This research involved no human subjects.

Consent to Participate

This research required no study-specific approval by the appropriate ethics committee as it does not involve humans and/or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical collection on Unmanned Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penar, P., Hendzel, Z. Experimental Verification of the Differential Games and H Theory in Tracking Control of a Wheeled Mobile Robot. J Intell Robot Syst 104, 61 (2022). https://doi.org/10.1007/s10846-022-01584-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01584-6

Keywords

Navigation