Skip to main content
Log in

Design of Beaver-like Hind Limb and Analysis of Two Swimming Gaits for Underwater Narrow Space Exploration

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The exploration of underwater narrow space is of great significance to study the phenomena, process and laws of life in the ocean. The existing underwater robots are not suitable for the underwater narrow area exploration. Beavers use the hind limbs with webfeet to provide power for flexible movement and possess certain underwater operation ability. In this study, based on the bionic prototype of beaver hind limb, the system structure of beaver-like hind limb is designed, and the paddling motion of beaver-like hind limb is realized by combining servos with rope drive. On this basis, the concept of swimming gait is proposed, and swimming process of beavers with one leg and two legs is analyzed, and the movement sequence of various joints and parts in the swimming is studied. Then, the joint angle data of beavers from the video are obtained and a nonlinear oscillation swimming controller based on Fourier technology is proposed to plan the bionic swimming trajectory of the beaver. Further, the swimming efficiency of the beaver-like hind limb is analyzed, and a model of the swimming efficiency is proposed, which can provide a basis for evaluating its swimming effect. Finally, an experimental platform for the swimming of the beaver-like hind limb is set up, and bionic and reconstruction of the swimming gaits are generated by the nonlinear oscillation swimming controller, and the swimming experiment is carried out. The results show that the propulsion efficiencies of the alternate and synchronous bionic gait are 0.5 × 10−3 and 0.6 × 10−3, higher than those of the generated gaits which are 0.2 × 10−3 and 0.3 × 10−3. This verifies the rationality of the beaver swimming, and lays a theoretical foundation for the swimming realization of the beaver-like hind limb, which provides theoretical support for us to further understand the swimming mechanism of the beaver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freer, J.J., Tarling, G.A., Collins, M.A., Partridge, J.C., Genner, M.J.: Predicting future distributions of lanternfish, a significant ecological resource within the Southern Ocean. Divers. Distrib. 25(8), 1259–1272 (2019)

    Google Scholar 

  2. Liu, C., Yang, J., Yin, J., An, W.: Coastline detection in SAR images using a hierarchical level set segmentation. IEEE J-Stars. 9(11), 4908–4920 (2016)

    Google Scholar 

  3. Jansen, A., Luck, K.S., Campbell, J., Amor, H.B., Aukes, D.M.: Bio-inspired robot design considering load-bearing and kinematic ontogeny of chelonioidea sea turtles. In: Conference on Biomimetic and Biohybrid Systems, pp. 216–229 (2017)

  4. Packard, G.E., Kukulya, A., Austin, T., Dennett, M., Stokey, R.: Continuous autonomous tracking and imaging of white sharks and basking sharks using a REMUS-100 AUV. In: In 2013 OCEANS-San Diego, pp. 1–5 (2013)

  5. Armstrong, R.A., Pizarro, O., Roman, C.: Underwater robotic technology for imaging mesophotic coral ecosystems. In: Mesophotic Coral Ecosystems, pp. 973–988. Springer (2019)

  6. Zhong, Y., Li, Z., Du, R.: A novel robot fish with wire-driven active body and compliant tail. IEEE/ASME Trans. Mech. 22(4), 1633–1643 (2017)

    Article  Google Scholar 

  7. Shintake, J., Cacucciolo, V., Shea, H., Floreano, D.: Soft biomimetic fish robot made of dielectric elastomer actuators. Soft. Robot. 5(4), 466–474 (2018)

    Article  Google Scholar 

  8. Song, S.H., Kim, M.S., Rodrigue, H.: Turtle mimetic soft robot with two swimming gaits. Bioinspir. Biomim. 11(3), 036010 (2016)

    Article  Google Scholar 

  9. Salumäe, T., Chemori, A., Kruusmaa, M.: Motion control architecture of a 4-fin U-CAT AUV using DOF prioritization. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1321–1327. IEEE (2016)

  10. Imahama, T., Watanabe, K., Mikuriya, K., Nagai, I.: A method for calculating the amount of movements to estimate the self-position of manta robots. J. Phys. Conf. Ser. 962(1), 012–016 (2018)

    Google Scholar 

  11. Wang, Z., Yu, J., Zhang, A.: Hydrodynamic performance analysis of a biomimetic manta ray underwater glider. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1631–1636. IEEE (2016)

  12. Yu, J., Su, Z., Wu, Z., Tan, M.: Development of a fast-swimming dolphin robot capable of leaping. IEEE-ASME Trans. Mech. 21(5), 2307–2316 (2016)

    Article  Google Scholar 

  13. Yeom, S.-W., Oh, I.-K.: A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater. Struct. 18(8), 085002 (2009)

    Article  Google Scholar 

  14. Frame, J., Lopez, N., Curet, O., Engeberg, E.D.: Thrust force characterization of free-swimming soft robotic jellyfish. Bioinspir. Biomim. 13(6), 064001 (2018)

    Article  Google Scholar 

  15. Yu, J., Xiao, J., Li, X., Wang, W.: Towards a miniature self-propelled jellyfish-like swimming robot. Int. J. Adv. Robot. Syst. 13(5), 1729881416666796 (2016)

    Article  Google Scholar 

  16. Rahman, M.M., Sugimori, S., Miki, H., Yamamoto, R., Sanada, Y., Toda, Y.: Braking performance of a biomimetic squid-like underwater robot. J. Bionic. Eng. 10(3), 265–273 (2013)

    Article  Google Scholar 

  17. Kelasidi, E., Liljeback, P., Pettersen, K.Y., Gravdahl, J.T.: Innovation in underwater robots: Biologically inspired swimming snake robots. IEEE Robot. Autom. Mag. 23(1), 44–62 (2016)

    Article  Google Scholar 

  18. Kelasidi, E., Kohl, A.M., Pettersen, K.Y., Hoffmann, B., Gravdahl, J.T.: Experimental investigation of locomotion efficiency and path-following for underwater snake robots with and without a caudal fin. Annu. Rev. Control. 46, 281–294 (2018)

    Article  MathSciNet  Google Scholar 

  19. Wang, Z., Gao, Q., Zhao, H.: CPG-inspired locomotion control for a snake robot basing on nonlinear oscillators. J. Intell. Robot. Syst. 85(2), 209–227 (2017)

    Article  Google Scholar 

  20. Herzfeld, M., Schmidt, M., Griffies, S., Liang, Z.: Realistic test cases for limited area ocean modelling. Ocean Model. 37(1–2), 1–34 (2011)

    Article  Google Scholar 

  21. Salazar, M., Little, B.: Rusticle formation on the RMS titanic and the potential influence of oceanography. J. Marit. Archaeol. 12(1), 25–32 (2017)

    Article  Google Scholar 

  22. Mallios, A., Ridao, P., Ribas, D., Carreras, M., Camilli, R.: Toward autonomous exploration in confined underwater environments. J. Field Robot. 33(7), 994–1012 (2016)

    Article  Google Scholar 

  23. Chen, G., Jin, B., Chen, Y.: Accurate and robust body position trajectory tracking of six-legged walking robots with nonsingular terminal sliding mode control method. Appl. Math. Model. 77(1348–1372), 1348–1372 (2020)

    Article  MathSciNet  Google Scholar 

  24. Gang, C., Bo, J., Ying, C.: Nonsingular fast terminal sliding mode posture control for six-legged walking robots with redundant actuation. Mechatronics. 50, 1–15 (2018)

    Article  Google Scholar 

  25. Wang, Y., Gu, L., Xu, Y., Cao, X.: Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode. IEEE Trans. Ind. Electron. 6194–6204 (2016)

  26. Wang, Y., Jiang, S., Chen, B., Wu, H.: A new continuous fractional-order nonsingular terminal sliding mode control for cable-driven manipulators. Adv. Eng. Softw. 119(MAY), 21–29 (2018)

    Article  Google Scholar 

  27. Cui, R., Chen, L., Yang, C., Chen, M.: Extended State Observer-Based Integral Sliding Mode Control for an Underwater Robot With Unknown Disturbances and Uncertain Nonlinearities. IEEE Trans. Ind. Electron. 64(8), 6785–6795 (2017)

    Article  Google Scholar 

  28. He, B., Zhou, Y., Wang, Z., Wang, Q., Shen, R., Wu, S.: A multi-layered touch-pressure sensing ionogel material suitable for sensing integrated actuations of soft robots. Sensors Actuators A Phys. 272(341–348), 341–348 (2018)

    Article  Google Scholar 

  29. Guo, J., Li, C., Guo, S.: Path optimization method for the spherical underwater robot in unknown environment. J. Bionic. Eng. 17(5), 944–958 (2020)

    Article  MathSciNet  Google Scholar 

  30. Santori, R.T., Vieira, M.V., Rocha-Barbosa, O., Magnan-Neto, J.A., Gobbi, N.: Water absorption of the fur and swimming behavior of semiaquatic and terrestrial oryzomine rodents. J. Mammal. 89(5), 1152–1161 (2008)

    Article  Google Scholar 

  31. Graf, P.M., Wilson, R.P., Sanchez, L.C., Hacklӓnder, K., Rosell, F.: Diving behavior in a free-living, semi-aquatic herbivore, the Eurasian beaver Castor fiber. Ecol. Evol. 8(2), 997–1008 (2018)

    Article  Google Scholar 

  32. Campbell-Palmer, R., Jones, S., Parker, H.: The Eurasian Beaver Handbook: Ecology and Management of Castor Fiber. Pelagic Publishing Ltd. (2016)

  33. Campbell, R.D.: Demography and Life History of the Eurasian Beaver Castor fiber. (2010)

  34. Fish, F.E.: Mechanics, power output and efficiency of the swimming muskrat (Ondatra zibethicus). J. Exp. Biol. 110(1), 183–201 (1984)

    Article  Google Scholar 

  35. Sketching Bird.: Image result for beaver underwater. Available: https: //www.pinterest.com/pin/777152479425265524/ (2021)

  36. European Beaver Photography.: Beaver. Available: https: //www.ingoarndt.com/portfolio/european-beavers/ (2021)

  37. Remi Masson Plongeur Photographe.: Le Castor. Available: https: //www.remimasson.com/gallery/le-castor/ (2021)

  38. Graf, P.M., Mayer, M., Zedrosser, A., Hackländer, K., Rosell, F.: Territory size and age explain movement patterns in the Eurasian beaver. Mamm. Biol. 81(6), 587–594 (2016)

    Article  Google Scholar 

  39. Webb, P.W.: Hydrodynamics and Energetics of Fish Propulsion (1975)

  40. Reynolds, P.S.: Size, shape, and surface area of beaver, Castor canadensis, a semiaquatic mammal. Can. J. Zool. 71(5), 876–882 (1993)

    Article  Google Scholar 

  41. Shipley, E.: The Vertebrate Skeleton, C.J. Clay. Available: https: //www.gutenberg.org/files/43431/43431-h/43431-h.htm (2013). Accessed 9 Aug 2013

  42. Dutch Maritime Productions.: Swimming Beaver-Underwater-Wildlife Rehabilitation. Available: https: //www.youtube.com/watch?v=IUavZJK4FJQ (2019). Accessed 21 May 2019

  43. Jak Wonderly.: Beaver underwater-Bever zwemt onderwater. Available: https: //www.youtube.com/watch?v=04PmnJUfKT4 (2019). Accessed 20 Aug 2019

  44. Zamparo, P., Pendergast, D.R., Termin, B., Minetti, A.E.: How fins affect the economy and efficiency of human swimming. J. Exp. Biol. 205(Pt 17), 2665 (2002)

    Article  Google Scholar 

  45. Zamparo, P., Pendergast, D.R., Mollendorf, J., Termin, A., Minetti, A.E.: An energy balance of front crawl. Eur. J. Appl. Physiol. 94(1–2), 134 (2005)

    Article  Google Scholar 

  46. Tsunokawa, T., Mankyu, H., Takagi, H.: The effect of using paddles on hand propulsive forces and Froude efficiency in arm-stroke-only front-crawl swimming at various velocities. Hum. Mov. Sci. 64, 378–388 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 51875528), Zhejiang Provincial Natural Science Foundation of China (No. LY20E050018), and Science Foundation of Zhejiang Sci-Tech University (ZSTU) (No. 17022183-Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Ti, X., Shi, L. et al. Design of Beaver-like Hind Limb and Analysis of Two Swimming Gaits for Underwater Narrow Space Exploration. J Intell Robot Syst 104, 65 (2022). https://doi.org/10.1007/s10846-022-01610-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01610-7

Keywords

Navigation