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Abstract
A critical component in the public health response to pandemics is the ability to determine the spread of diseases via
diagnostic testing kits. Currently, diagnostic testing kits, treatments, and vaccines for the COVID-19 pandemic have been
developed and are being distributed to communities worldwide, but the spread of the disease persists. In conjunction, a
strong level of social distancing has been established as one of the most basic and reliable ways to mitigate disease spread.
If home testing kits are safely and quickly delivered to a patient, this has the potential to significantly reduce human
contact and reduce disease spread before, during, and after diagnosis. This paper proposes a diagnostic testing kit delivery
scheduling approach using the Mothership and Drone Routing Problem (MDRP) with one truck and multiple drones. Due
to the complexity of solving the MDRP, the problem is decomposed into 1) truck scheduling to carry the drones and 2)
drone scheduling for actual delivery. The truck schedule (TS) is optimized first to minimize the total travel distance to cover
patients. Then, the drone flight schedule is optimized to minimize the total delivery time. These two steps are repeated
until it reaches a solution minimizing the total delivery time for all patients. Heuristic algorithms are developed to further
improve the computational time of the proposed model. Experiments are made to show the benefits of the proposed approach
compared to the commonly performed face-to-face diagnosis via the drive-through testing sites. The proposed solution
method significantly reduced the computation time for solving the optimization model (less than 50 minutes) compared to
the exact solution method that took more than 10 hours to reach a 20% optimality gap. A modified basic reproduction rate
(i.e., mR0) is used to compare the performance of the drone-based testing kit delivery method to the face-to-face diagnostic
method in reducing disease spread. The results show that our proposed method (mR0=0.002) outperformed the face-to-face
diagnostic method (mR0=0.0153) by reducing mR0 by 7.5 times.

Keywords Pandemic response · COVID-19 · Testing kit delivery · Social distancing · Drone-truck scheduling ·
Mothership and Drone Routing Problem

1 Introduction

Currently, while the world’s largest pharmaceutical com-
panies are actively developing and distributing COVID-19
vaccines and treatments, the spread of the pandemic still
persists and is entering its fourth wave [46]. Countries are
continuing to establish and maintain various policies to slow
the spread of infection. Health authorities in many countries
have set up drive-through testing sites to cover the enormous
demand for diagnostics. The principal diagnostic method to
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confirm COVID-19 cases at drive-through testing sites is by
a molecular diagnostic kit such as Polymerase Chain Reac-
tion (PCR). However, there are drawbacks to the approach.
The first is the slow process to get the diagnostic result back
to the patient. In many cases, it can take over 6 hours to
determine the status of the collected sample [27]. Addition-
ally, it typically takes 2 to 5 days for the patient to receive
the result. If a patient with COVID-19 symptoms is not quar-
antined and contacts other people during this waiting period,
the spread of the virus will not be contained. Secondly, the
PCR testing kit requires a sterile plastic swab to be inserted
deep into the nose to collect sputum as a sample. Since the
sample must be handled by someone else, it may also lead to
personal contact with the possibility of infecting the testing
personnel. Accordingly, more advanced diagnostic methods
are desired to help contain infectious diseases.
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In November 2020, the Food and Drug Administration
(FDA) in the United States approved a diagnostic testing kit
that allows patients to self-test for the COVID-19 at home.
In particular, this testing kit allows patients to take samples
by themselves and check the results directly within 30
minutes. However, patients who become aware of suspected
COVID-19 symptoms must go to a hospital or pharmacy to
obtain these testing kits, and there is still an opportunity to
contact another non-infected person in the process.

In this study, we propose a strategy to deliver COVID-
19 self-testing kits to patients at home using the Mothership
and Drone Routing Problem (MDRP) with one truck and
multiple drones. Hence, potential patients can use at-home
testing kits to determine whether they are infected with
COVID-19 while social distancing is assured as much as
possible. The primary focus of this study is to lower the
infection rate by avoiding unnecessary personal contacts
while testing for COVID-19. The main contribution of this
study is as follows:

• To propose an approach to test COVID-19 using the
Mothership and Drone Routing Problem (MDRP) that
can help mitigate the possibility of human contact that
may occur during the diagnosis process. This has the
potential to suppress the spread of COVID-19.

• To provide decision-makers with a performance metric
for using a truck and drones to deliver testing kits to
patients during a pandemic: We show that the proposed
method has the possibility of significantly reducing
the risk of infection compared to the current testing
methods.

The rest of this paper is organized as follows. Section 2
reviews literature related to this area. Section 3 describes
the problem in detail and presents the mathematical
models applied to find a solution. In Section 4, solution
techniques to solve the MDRP (Mothership and Drones
Routing Problem). Section 5 describes an analysis tool
for numerically measuring the risk of infection in the
process of each diagnostic method and provides a numerical
experiment to illustrate the effectiveness of the proposed
model and numerical results for infection risk. Finally, our
research is summarized in Section 6 including potential
extensions of the research.

2 Literature Review

Patients with suspected COVID-19 symptoms need to be
tested and can crowds diagnostic locations such as hospitals
and drive-through sites. Despite the elevated disinfection
efforts, the risk of infection can still remain. In the case

of MERS (Middle East Respiratory Syndrome) and SARS-
CoV-22, which are viruses of the same family as COVID-
19, many cases of infection were reported in hospitals [42].
For example, 99% (i.e., 185 cases) of the total confirmed
cases of MERS in South Korea in 2015 were infected
in hospitals [23]. The data from the International Council
of Nurses (ICN) released in October 2020 estimated that
more than four million healthcare workers worldwide are
infected with COVID-19 [2]. Social distancing has been
shown to be most effective in reducing the infection risk.
This underscores an urgent need for a new technology for
patients to be tested without joining the crowd of numerous
suspected patients. This underscores an urgent need for a
new technology for patients to be tested without joining the
crowd of numerous suspected patients.

There have been recent studies on mathematical models
for using drones to deliver medical kits and packages to
customers. The drone delivery routing problems can be
classified into two categories (see Fig. 1): (1) delivery by
both trucks and drones and (2) delivery by drones only.

Delivery by Both Trucks and Drones The main idea of this
problem is to utilize both a truck and drones to deliver
medical testing kits to where the patients live. Optimization
models are often a variant of travelling salesman problem
(TSP) or vehicle routing problem (VRP) depending on
the number of trucks to be used in the problem. In TSP
with drones (TSP-D), the delivery schedule is optimized
for a combination of one truck and multiple drones [6,
43, 49]. Similarly, the VRP with drones (VRP-D) is to
optimize the delivery schedule utilizing multiple trucks and
multiple drones [29, 31, 36, 52]. Common objectives in
the literature include minimizing the duration of operation
(i.e., makespan) routing and operation cost, and customers
waiting time [26, 35, 51]. Because this class of problem
is identified as NP-hard, exact solution techniques are
only used to solve small problems. But, most solution
approaches are largely heuristic methods to handle larger
scale problems providing good solutions in a timely manner
[30, 34, 36, 38].

Delivery by Drones Only This category of problems uses
drones only for parcel delivery, and there are two versions
of models in the literature. The first version schedules
drone flights to-and-from a depot [24, 47]. Kim et al. [25]
propose a model in which drones are utilized to deliver
medical kits from fixed locations of ground control centers
(GCCs) for patients with chronic diseases in rural areas.
Due to the limited battery capacity of drones, their model
suggests using a larger number of drones from multiple
GCCs. Alternatively, the short flight range limitation from
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Fig. 1 The categorization of
drone routing problem by [30]

a GCC can be addressed by operating drones from a mobile
control center such as a truck. It can also help ensure social
distancing during a pandemic because people can stay at
home to get the testing done. The main idea of the Carrier-
Vehicle Problem with Drones (CVP-D) is that the mobile
base (e.g., truck) serves as a mothership that dispatches
and collects multiple drones to perform delivery. Hence, it
requires a fleet of cooperating vehicles with complementary
functions that perform autonomous delivery [8, 16, 28, 30].
Table 1 presents the main features of CVP-D currently
found in the literature. In the majority of the works the fleet
is composed of one truck and one or several drones.

Variants of the CVP-D have been proposed for pickup
and delivery. For example, [21] proposed a model in which
a drone is mounted on a single vehicle to visit more than
one customer to deliver and pick up parcels. Drones can be

dispatched and collected multiple times following the truck
path to visit each customer only once. The truck returns to
the depot after collecting all drones which completed the
delivery missions. In another CVP-D variant by [50], drones
can only be launched or retrieved from trucks at predefined
mobile distribution centers where the launch and retrieve
locations are allowed to be different. Their model focused
on optimizing drone routing and the location of mobile
distribution centers. But, truck routing was not discussed.
[32] presented a delivery system in which trucks carry
drones and the delivery is carried entirely by the onboard
drones. A drone performs a single delivery mission to a
specific point.

Some researchers proposed drone routing approaches
based on a predetermined route of the carrying truck ([44],
[5] and [7]). Typically, a large vehicle is used as a mobile

Table 1 Summary of the CVP-D contributions in the scientific literature

References Trucks Drones Objcetive function (minimize) Time-Windows Drop & Pickup Multiple visits

[44] 1 1 number of targets No No Yes

[32] 1 1 total distance No No No

[5] 1 1 total distance No No No

[18] 1 1 completion time No No No

[7] 1 multiple make span No No No

[17] multiple multiple operating cost Yes No No

[21] 1 multiple operating cost No Yes Yes

[50] multiple multiple total distance No Yes Yes

[3] 1 1 completion time No No No

[39] 1 1 completion time No No No

[40] 1 multiple completion time No No Yes

[33] 1 multiple total distance No No No

[20] multiple multiple truck number Yes No No
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depot for a single drone onboard. Unlike [32], drones are
allowed to visit multiple locations. With the goal of visiting
as many locations as possible, [44] proposed a genetic
algorithm to solve the model. Othman et al. [5] allowed
drones to take off from an intermediate node and get picked
up by a truck at another location. The problem was modeled
as a graph problem and a polynomial-time approximation
algorithm was developed as a solution method. Boysen
et al. [7] focus on optimizing the schedule of drones for a
given truck path. The authors examined three truck-drone
operation policies: same take-off and pick-up location,
different locations for takeoff and pickup of drones, and no
restriction on the locations.

Poikonen et al. [41] consider the problem of optimizing
both the truck routes and the drone paths. They proposed a
branch-and-bound algorithm to solve small-size instances,
and heuristic methods such as a greedy algorithm and local
search strategies for larger instances. As an extension to
the previous work, [40] allowed drones to visit multiple
customers in one flight path, and the energy consumption
rate was also considered to account for the limited capacity
of a drone battery. A heuristic approach “path, transform,
shortest path” was proposed to solve the problem. In
another extension, [39] introduced the “Mothership and
Drone Routing Problem (MDRP)” which considers the
routing of a mothership and a drone to visit several
designated locations. Unlike the previous model, the drone
is allowed to visit multiple targets consecutively before
returning to the mothership for refueling In the infinite-
capacity drone routing problem (MDRP-IC) setting. They
developed an exact branch-and-bound solution approach
and proposed two greedy heuristic approaches to find near-
optimal solutions.

Although the existing approaches work well for their
respective problems, they do not consider the important
public health concept of “social distancing” as we discuss in
this paper. Hence, this paper builds on the existing literature
to solve the problem of delivering medical kits to patients
to minimize human contact within the context of an existing
pandemic (i.e., COVID-19).

3 Problem Description and Model
Formulation

We propose a medical kit delivery approach, in which a
truck carries drones that perform the actual delivery. The
drones are assumed to follow the pre-determined routes
within the line of sight of the pilot. Due to the limited battery
capacity of drones, the drone flight range is limited. Hence,
a truck acts as a mobile drone control center and carries the
drones onboard to launch and retrieve them while visiting
patients in the designated region. Although it is limited,

the truck is capable of carrying multiple drones so that
parallel flights can be performed to cover multiple patients
to speed up the delivery mission. Therefore, our goal is to
find a coordinated schedule between the truck and drones so
that the total delivery completion time is minimized. Such
a delivery system is referred to “Mothership and Drones
Routing Problem” (MDRP) [39].

Before describing the model formulation, we state few
problem-specific assumptions used in this paper. The
maximum drone flight time is not affected by the amount
of load to be carried by a drone. Since most testing kits are
lightweight, the payload has minimal impact on the flight
time. The truck driving range is also not affected by the
number of drones or testing kits loaded. The truck can stop
and collect a drone at intermediate nodes (I ) only.

Using sets, parameters, and variables defined in Table 2,
the proposed MDRP model is formulated as follows:

min
x,y,w,h,t,T ,b,u,v,D

Z =
( ∑

i,j∈At

wti,j yi,j +
∑
i∈I

wi

)
(1)

+
( ∑

i,j∈Ad

wdi,j xi,j +
∑
i∈N

(hi + si)

)

∑
(i,C)∈At

yi,C =
∑

(C,j)∈At

yC,j= 1 (2)

∑
(i,j)∈At

yi,j=
∑

(j,i)∈At

yj,i , ∀j ∈ I\{C} (3)

vi − |I |(1 − yi,j ) + 1≤ vj , ∀(i, j) ∈ At, j �= C (4)

Ti + wi + wti,j≤ Tj + M(1 − yi,j ), ∀(i, j) ∈ At (5)

Ti + wi + wti,j≥ Tj − M(1 − yi,j ), ∀(i, j) ∈ At (6)

wi≤ Wmax ∀i ∈ I (7)

hi≤ Hmax ∀i ∈ N (8)

∑
(i,j)∈Ad

xi,j=
∑

(j,i)∈Ad

xj,i = 1, ∀j ∈ N (9)

1 − |N |(1 − xi,j )≤ uj , ∀(i, j) ∈ Ad, i ∈ I (10)

1 + ui − |N |(1 − xi,j )≤ uj , ∀(i, j) ∈ Ad, j /∈ I (11)

bj + si + hi +wdi,j − M(1 − xi,j )

≤ bi, ∀(i, j) ∈ Ad, i /∈ I (12)

bj + si + hi +wdi,j − M(1 − xi,j )

≤ Rmax, ∀(i, j) ∈ Ad, i ∈ I (13)
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Table 2 Sets, parameters, and variables that are used in MDRP

Sets Notation Description

I Set of the intermediate nodes on the truck network.

At Set of arcs representing road segments

N Set of patients

Ad Set of all possible flight arcs.

Parameters

Gt(I, At ) The directed network graph of truck

Gd({N ∪ I }, Ad) The directed network graph of flights

wti,j (min) Travel time of truck traversing arc (i, j) ∈ At

wdi,j (min) Flight time of drone traversing link (i, j) ∈ Ad

si (min) Service time at patient location i

n Total number of drones

m Total number of operators performing launch and retrieve

Wmax(min) Maximum waiting time.

Hmax(min) Maximum hovering time.

δ(min) Setup time for a drone

θ (min) Drone retrieval time

M A very big number

Rmax(min) Maximum flight time of drone.

Variables

yi,j ∈ {0, 1} If truck chooses link (i, j) ∈ At to traverse it gets 1 otherwise 0.

xi,j ∈ {0, 1} If drone chooses link (i, j) ∈ Ad to flight it gets 1 otherwise 0.

vi ∈ Z
0+ Order of visiting node i ∈ I in truck path.

ui ∈ Z
0+ Order of visiting node i ∈ I ∪ N in flight path.

wi ∈ R
0+ Waiting time of truck at node i ∈ I .

hi ∈ R
0+ Waiting time of drone (hovering) over node i ∈ N .

Ti ∈ R
0+ Time of entrance of truck at node i ∈ I .

ti ∈ R
0+ Time of entrance of drone at node i ∈ I ∪ N .

bi ∈ R
0+ Remaining flight range, at the time of reaching node i ∈ I ∪ N .

Di ∈ Z
0+ The number of drones mounted in truck after leaving node i ∈ I .

ti +si + hi + wdi,j

≤ M(1 − xi,j ) + tj , ∀(i, j) ∈ Ad, i /∈ I (14)

ti + si +hi + wdi,j

≥ tj − M(1 − xi,j ), ∀(i, j) ∈ Ad, i /∈ I (15)

Ti − M(1 − xi,j ) ≤ ti ≤ Ti + wi + M(1 − xi,j ), ∀(i, j)

∈ Ad, i ∈ I (16)

Tj − M(1 − xi,j ) ≤ tj ≤ Tj + wj + M(1 − xi,j ),

∀(i, j) ∈ Ad, j ∈ I\{C} (17)

Di − Dj − M(1 − yi,j ) ≤
∑

(j,ii)∈Ad

xj,ii −
∑

(ii,j)∈Ad

xii,j ,

∀((i, j) �= C) ∈ At (18)

Di − Dj + M(1 − yi,j ) ≥
∑

(j,ii)∈Ad

xj,ii −
∑

(ii,j)∈Ad

xii,j ,

∀((i, j) �= C) ∈ At (19)

Di +
∑

(ii,C)∈Ad

xii,C ≤ n+M(1−yi,C), ∀(i, C) ∈ At (20)

Di +
∑

(ii,C)∈Ad

xii,C≥ n − M(1 − yi,C), ∀(i, C) ∈ At (21)

DC +
∑

(C,jj)∈Ad

xC,jj≥ n − M(1 − yC,j ), ∀(C, j) ∈ At (22)

DC +
∑

(C,jj)∈Ad

xC,jj≤ n + M(1 − yC,j ), ∀(C, j) ∈ At (23)

∑
(i,k)∈Ad

xi,k≤ n
∑

(i,j)∈At

yi,j , ∀i ∈ I (24)

∑
(k,j)∈Ad

xk,j≤ n
∑

(i,j)∈At

yi,j , ∀j ∈ I (25)

δ

m

∑
(i,j)∈Ad

xi,j + θ

m

∑
(j,i)∈Ad

xj,i≤ wj , ∀j ∈ I (26)
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The objective of model (2) consists of two parts to
minimize the total truck operation time and the drone flight
time. The first part is to minimize both the operation time
and the wait time of the truck at all stop points. The
second part is to minimize the total time of drone operation
including the flight time, service time, and idle hovering
to synchronize with the truck schedule. The truck starts
and ends its journey from and to the depot (2), while
maintaining the flow conservation (3). Constraints (4) and
(11) are to eliminate sub-tours for the truck and drone path.
Constraints (5) and (6) are used to keep track of the order
of visits that the truck makes to form a path. Similarly,
constraints (14) and (15) are used to keep track of the order
of visits to nodes by drones. To synchronize the movements
between the truck and drones, the truck must be present
at the launch and return locations of a drone: constraints
(16) and (17). A drone will hover at a patient’s location
during the delivery service, and the hovering time must
not exceed the allowed maximum time (8). Similarly, the
truck’s waiting time at any stopping point must be less
than the maximum waiting time (7). Adding the hovering
time for drones and waiting time for the truck also adds
flexibility in the schedule so that the truck and drones can
rejoin at return locations. Each patient needs to be served
once. Therefore, only one drone must be assigned to serve
the patient (9). Constraints (12) and (13) limit drones to
fly within the allowed maximum flight range (Rmax). The
next set of constraints (18)-(23) are for the flight assignment
based on the availability of drones; the constraints conserve
the flow of the drones in the Gt (#drones in-going = #drones
out-going in each intermediate node). Constraints (24) and
(25) are to synchronize the launch and retrieval location by
the truck and drones. Constraint (26) assures that the setup
time for departure flights and the retrieval time for arrivals
do not exceed the allotted waiting time in any intermediate
node. Note that, based on the number of operators (m) and
waiting time (w), the available man-hour will be m × w.

4 Solution Technique

The MDRP is an NP-hard problem because a simpler version
of the problem, a modified Location Routing Problem, is
known to be NP-hard [21]. Therefore, most exiting methods
for solving an MDRP model often resort to developing
computationally efficient algorithms to find good feasible
solutions. In this paper, we propose a decomposition method
coupled with fast heuristic algorithms to expedite the solution
process. In the decomposition scheme, the original problem
is decomposed into a truck scheduling problem and a flight
scheduling problem so that each problem can be solved much
faster than solving the complex model altogether.

4.1 Decomposition Scheme

The MDRP constraints can be categorized into three
groups: “Truck related”, “Drone related”, and “Mutual”.
“Truck related” refers to constraints (2) to (7) and they
are associated with designing the truck schedule only.
Constraints (8) to (15) belong to “Drone related”, which
apply to the drone flight scheduling alone. Note that
these two groups of constraints are mutually exclusive.
“Mutual” is the group of constraints (16–26) that enable the
collaboration between the truck and drones. Based on these
categories, we can transform the model into a bi-level model
structure:

T S: The upper-level problem is to optimize the truck
schedule (TS). Based on the sequence of serving
patients, which is determined at the lower level, the
goal is to find an optimal schedule for the truck
and assign launch-return locations for drones. Thus,
the optimization model (see Section 4.1.1) contains
“Truck related” constraints as well as “Mutual”
constraints of MDRP. Note that the “Drone related”
constraints are already satisfied at this stage.

FS: For a given truck schedule, the lower-level problem
is optimized the drone flight schedule (FS). The
model (see Section 4.1.2) contains “Drone related”
and “Mutual” constraints only.

Our proposed solution approach recursively solves TS and
FS, in which a solution from one helps improve the solution
for the other. This iterative process continues until the
solution can no longer be improved.

4.1.1 Optimize Truck Schedule for a Given Sequence
of Flight Sequence

Sets, parameters, and variables are presented in Table 3. For
a given sequence of customers to visit, the objective of T S

is to find the shortest truck path with complete drone flights
along the path. A complete drone flight schedule includes
the sequence of customers and the launch (l ∈ I ) and return
(r ∈ I ) locations to join the truck along the truck path. For
all given sequences of customers, we need to build the flight.
For example, SP i constitutes of b customers and its launch
and return nodes are not determined.

SP i = ci
1 → ci

2 → ... → ci
b (27a)

By adding l, r ∈ I to the SP i , it turns into a complete flight
F i

l,r ;

F i
l,r = l → ci

1 → ci
2 → ... → ci

b → r (27b)
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Table 3 Sets, parameters, and variables that are used in truck schedule optimization based on given patients sequences

Sets:

Notation Description

SP Set of visiting sequences for the patients.

SP = {SP i |SP i ⊂ N, ∀i, j SP i ∩ SP j = φ,
⋃|SP |

i=1 SP i = N i = 1, ..., |SP |}
LFR Set of possible flights within the maximum flight range.

LFR = {(l, i, r)|F i
l,r = {l} ∪ SP i ∪ {r}, l, r ∈ I, t il,r ≤ Rmax}

Parameters

Notation Description

t il,r (min) The flight duration of F i
l,r ∈ LFR including service,

flight, and hovering time.

Variables

Notation Description

f i
l,r ∈ {0, 1} If a drone assigned to serve SP i ,

chooses node l, r ∈ I as its launch and return nodes,

then it gets 1 otherwise 0.

And a new binary decision variable (f i
l,r ) will be introduced

whether to choose the F i
l,r . The flight duration of F i

l,r , (t il,r )
is calculated as follows:

t il,r = wdl,ci
1
+

b−1∑
j=1

wdcij,ci j+1 + wdci
b,r +

∑
j∈SP i

(sj + hj ) (27c)

This reformulation helps reduce a considerable number
of variables and constraints in MDRP and, therefore, TS is
much easier to solve than the original MDRP model.

min
y,f,w,T ,D

T S =
∑

i,j∈At

wti,j yi,j +
∑

(l,i,r)∈LFR

til,rf
i
l,r +

∑
i∈I

wi (28)

(2)-(8) (29)

Tr − Tl − wl≤ t il,r + M(1 − f i
l,r ) ∀(l, i, r �= C) ∈ FLR (30)

t il,r − M(1 − f i
l,r )≤ Tr + wr − Tl ∀(l, i, r �= C) ∈ FLR (31)

∑
(l,ii,r)∈FLR,

ii=i

f i
l,r= 1, i = 1, ..., |SP | (32)

Dl − Dr ≤
∑

(r,i,j)∈LFR

f i
r,j −

∑
(k,i,r)∈LFR

f i
k,r

+M(1 − yl,r ) ,∀(l, r) �= C ∈ At (33)

Dl − Dr ≥
∑

(r,i,j)∈LFR

f i
r,j −

∑
(k,i,r)∈LFR

f i
k,r

−M(1 − yl,r ) ,∀(l, r) �= C ∈ At (34)
Dl +

∑
(l,i,C)∈FLR

f i
l,C≤ n + M(1 − yl,C), ∀(l, C) ∈ At (35)

Dl +
∑

(l,i,C)∈FLR

f i
l,C≥ n − M(1 − yl,C), ∀(l, C) ∈ At (36)

DC +
∑

(C,i,r)∈FLR

f i
C,r= n (37)

∑
(l,i,r)∈FLR

f i
l,r≤ n

∑
(l,j)∈At

yl,j ∀l ∈ I (38)

∑
(l,i,r)∈FLR

f i
l,r≤ n

∑
(k,r)∈At

yk,r ∀r ∈ I (39)

δ

m

∑
(l,i,j)∈FLR

f i
l,j + θ

m

∑
(j,i,r)∈FLR

f i
j,r≤ wj ∀j ∈ I (40)

The goal of T S is to build the truck path and drone flight
schedule to minimize the total flight time for drones and
travel time for trucks (28). Constraints (29) are adopted from
Section 3 to create feasible flight paths. The constraints (30)
and (31) are to synchronize the drone departure and return
to join the truck based on the truck schedule. If the return
location is the depot, the delivery mission is complete,
and there is no need to coordinate with the truck schedule
anymore. Constraint (32) to ensure that there will be one
launch node (location) and one return node for the sequence.
Equation (33)-(40) are the updated version of (18)-(26) due
to variable f .

4.1.2 Optimize Flight Schedule based on a given truck
schedule

For a given truck schedule, the lower level problem is to
find a drone flight schedule to visit customers following the
tuck path. Using sets, parameters, and variables of this level
defined in Table 4, the optimization model is formulated as
follows:

min
x,h,t,v,D,b

FS =
∑

i,j∈A′
d

(wdi,j + si)xi,j +
∑
i∈N

hi (41)

s.t .
(8)−(15),(26)

(42)
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Tpi
−M(1 − xpi,j ) ≤ tpi

≤ Tpi
+ wpi

+M(1 − xpi,j )pi ∈ P, (pi, j) ∈ A′
d (43)

Tpj
−M(1 − xi,pj

) ≤ tpj
≤ Tpj

+ wpj

+M(1 − xi,pj
)pj ∈ P, (i, pj �= C) ∈ A′

d (44)

Dpi−1 − Dpi
=

∑
(j,pi )∈Ad

xj,pi
−

∑
(pi ,j)∈A′

d

xpi ,j , i = 2, ..., |P | (45)

DC +
∑

(C,i)∈A′
d

xC,i= Dp|P |−1 +
∑

(j,C)∈A′
d

xj,C = n (46)

The objective is to minimize the total flight time of
drones to complete all visits along the truck path. The first
term of FS is to minimize the total flight time and the
second term is to minimize the total hovering time of drones.
Constraints (43) and (44) synchronize the truck schedule
and the drone flight schedule to coordinate the efforts on
launching and retrieving drones. Constraints (45) and (46)
are based on available drones (idle ones in the truck +
returned ones) to determine the number of drones to be
launched for the next flight. They are equivalent to (18) and
(23) when the truck path is already determined.

4.2 The Proposed Solution Approach

The general procedure to solve MDRP using the bi-level
framework discussed in Section 4.1 is shown in Algorithm
1. The algorithm consists of three stages: Initialization,
Heuristic Loop, and Final Loop. Our goal is to solve the
two optimization models (T S and FS) corresponding to the
truck schedule and the drone flight schedule, respectively.
However, there are two challenges. First, finding an initial
feasible solution is not easy. To address this, a heuristic
algorithm T SPBFS is developed. Second, solving those

models solely based on the initial solution still can take
a very long time. Hence, a heuristic algorithm (“Heuristic
Loop”) has been developed to find a good feasible solution
so that the optimization models can converge fast using the
heuristic solution as a warm-up solution.

Initialization The main purpose of this stage is to provide
good and fast warm-up solutions for both TS and FS to
solve the problem faster. As an initial solution, a set of
single flights to visit each of the patients is constructed.
For instance, the flight that serves the ith patient is (C →
i → C). Some of the flights may be infeasible due to
the violation of flight range and availability of drones.
The T SPBFS (see Section 4.2.1) is to design a truck path
(P0) that guarantees the feasibility of single-visit flights
by choosing an appropriate location for launching and
retrieving the drones. The next step in “Exchange” is to
search for a better solution by allowing multiple visits by a
drone with the aim to reduce the total flight time to serve all
patients for a given truck path (P0). The stopping criterion
for solving the T S and FS is initialized here including
solver run-time (tm).

Heuristic Loop Given the initial solution from the previous
step (i.e., Pi−1 and Fi−1), the purpose of this stage is to
find a near optimal solution for both T S and FS in a fast
manner. This loop consists of solving T Sand the Exchange

heuristic algorithm. The T S will be solved until one of
the termination criteria is met. In the case that T S fails to
improve the truck path, its heuristic equivalent (T SPBFS)
is executed to improve the current truck path if possible. If
a new improved truck path (Pi) is found, its corresponding
drone flight schedule is optimized using Exchange.

Table 4 New or modified sets, parameters, and variables that are used in Flight schedule optimization based on a given truck path

Sets

Notation Description

P Itinerary of truck.

P : C → p2 → ... → p|P |−1 → C

A′
d {(i, j)| i �= j ∈ P ∪ N, i&j /∈ P }

Parameters:

Notation Description

G′
d ({P ∪ N}, A′

d )

The new network graph of flying drones

based on new truck path (P ).

G′
d is a subgraph of Gd .

wpi
(min) The allotted waiting for truck in node pi ∈ P .

Tpi
(min) Entrance time of truck at node pi ∈ P .

This value includes all the travel

and wait times till the node pi .

Tpi−1 + wpi−1 + wtpi−1,pi
= Tpi

, i = 2, ..., |P | − 1
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Fig. 2 The node rankings based
on closeness of the nodes to
depot by the BFS

Final Loop Based on the warm-start from the previous step,
this is the final attempt to reach optimality, the T S and FS

are solved recursively until no further improvement is made.
First, T S is solved to improve the truck schedule, followed
by solving FS for the corresponding drone schedule.

4.2.1 Heuristic Algorithms

Algorithm 1 contains two heuristic algorithms: T SPBFS

and Exchange. This section describes details on the
algorithms.

TSP with Breadth First approach (TSPBFS ): This is an iter-
ative algorithm that solves a modified travelling salesman
problem (mTSP) at each iteration. For a given sequence of
patients (SP ), the objective of mT SP is to find a feasible
and short distance truck path (P ) to cover those patients.
Unlike TSP that requires visiting all locations, mTSP con-
structs a tour covering a subset (MV ) of the intermediate
nodes, MV ⊆ I .

With the aim to find a short distance truck path, we use
the search tree structure (Gt ) consisting of a root node,
which is the drone launch location including the depot (C).
The BFS ranks the nodes based on their closeness 1 to
the root node. For example, consider a sample network,
Fig. 2a, with 9 nodes. By running the BFS on the graph
having C as the root node, Fig. 3c shows the ranked order
of the nodes sorted by two principles: (1) the proximity to
the depot and (2) the left-node first. Hence, node B has
the highest ranked order (B-1) because it is one unit away
from the root node, and it is located far left among other
nodes (D-2 and A-3) having the same unit distance from
C. The rest of the rankings follow the same principle to
construct the spanning tree shown in Fig. 3c. The result is
Ranking List (R) containing the nodes in ascending order,
i.e., R = [C, B, D, A, G, H, F, E, J ].

The next step is to construct MV following Algorithm
2. This algorithm contains a loop to search for a feasible
truck path (δ = 1). As the first step, MV is initialized as an
empty set (i.e., MV0 = MV ) and R0 = R; hence, no truck
path is available and the feasibility indicator δ is zero. At the
ith iteration, we select and remove the first element in Ri−1

and add it to MVi−1 to build MVi . Then, mT SP (MVi) is
solved to obtain a new truck path (Pi). The next step is to
solve a MIP model Launch-Return Optimizer (LRO) (see

1The closeness is measured by the number of nodes between the
current node to the root node. A lower number represents a closer
distance.
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Fig. 3 An illustrative example of T SPBFS algorithm of a sample Gt

with 9 nodes and 3 patients

Appendix). The goal of LRO is to find the best launch and
return locations on Pi for each sequence of patients in SP

so as to minimize the total flight time. The procedure for
building a flight path for a sequence of patients in LRO

is similar to T S (see Equation (27)). If the LRO returns a
feasible set of flights (F ), then the Pi and SP are considered
compatible and it will output δ = 1; otherwise, it will output
δ = 0 and loop repeats.

Figure 3 shows the steps of the T SPBFS to achieve the
feasible truck path for Gt with 9 nodes and 3 patients.

Exchange This iterative algorithm is designed to improve
the solution resulting from the previous step to minimize the
total flight time. For a given set of flights (F ) and truck path
(P ) at each iteration, a pair of flights (e.g. Fk

old , F o
old ∈ F )

is selected as input to a modified version of FS (mFS) to
find a better solution (e.g., Fk

new and Fo
new). The selection

of a pair of two flights is based on a metric representing the
Euclidean distance between two centroids. Suppose a flight
path begins from a drone launching location followed by
a sequence of locations to visit until it is retrieved by the
truck at the collection location. We can view this in a graph
where each location is associated with two-dimensional
(2D) coordinates. Hence, a centroid for each flight can
be calculated based on the set of x and y coordinates of
the locations. Once the centroid calculations are completed
for all flights, a distance matrix between any two flight
paths is constructed as the Euclidean distance between two
centroids corresponding to two flight paths. We then select
a pair of two flights whose distance is the smallest. If a tie
occurs in selecting two paths, a pair is selected randomly
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Fig. 4 An illustrative example of Exchange

among the candidates. The loop continues until no further
improvement can be made.

The algorithm includes solving mFS, which is an MIP
model shown as (47–49). Compared to FS, the mFS model
has an additional constraint (49) that keeps the itinerary of
the rest of the flights (F ′) fixed, where F ′ = F\{Fk, F o}.

min
x,h,t,v,D,b

mFS(f k, f o) =
∑

i,j∈A′
d

(wdi,j + si)xi,j

+
∑
i∈N

hi (47)

s.t.(42) − (46), (48)

xF
q
i ,F

q
i+1

= 1, i = 1, ..., |Fq | − 1, ∀Fq ∈ F ′ (49)

Note that constraint (49) contributes to a huge reduction
in solution space of FS and a substantial reduction can be
achieved in computational time for solving mFS.

4.2.2 An Illustrative Example of Exchange

Figure 4 shows one iteration of the Exchange algorithm
to improve flight paths for a problem instance with five
patients. The set of flight paths are:

F = {F 1 : A → 1 → 2 → B, F 2 : A → 3 → B, F 3 :
B → 4 → D, F 4 : B → 5 → D} (50)

Among all possible six pairs of flights, flights F 1 and
F 2 are the closest two flights and they are selected as input
to mFS. The remaining flights (i.e., F 3 and F 4) remain
unchanged.
F ′ = F\{F 1, F 2} = {F 3 : B → 4 → D, F 4 : B → 5 → D} (51)

The following set of constraints (52) in mFS keep
those flights in F ′ unchanged while attempting to find an
improved solution:

xi,j = 1, ∀(i, j) ∈ {(B, 4), (4, D), (B, 5), (5, D)} (52)

Because the paths for serving patients 4 and 5 are
predetermined, the mFS can focus on covering patients 1,
2, and 3 only. This reduction in the number of patients
to serve reduces the search space and results in reduced
computational time. The output of mFS(F 1, F 2) shows that
F 1 and F 2 must merge into a new flight to be able to lower
the total flight time (see Table 5).

5 Numerical Experiments

In this section, we apply the MDRP model to illustrate our
solution technique and to demonstrate the applicability of

Table 5 An example of one
iteration of Exchange

algorithm to improve fights

Old New

Adjustable flight itinerary (F\F ′) A → 1 → 2 → B

A → 3 → B A → 1 → 3 → 2 → B

Fixed flight itinerary (F ′) B → 4 → D

B → 5 → D B → 4 → D

B → 5 → D
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Fig. 5 Numerical Example with
40 patients and the road
network(Gt )

our model to help reduce the spread of a pandemic. The
model and corresponding algorithms were implemented in
Python 3.7 [48] and Gurobi 9.1.0 (Python API) [19]. All
experiments were performed on a server running RedHat
Linux 64-bit with 24 core Intel Xeon processors and 384GB
RAM.

5.1 Drone and Truck Scheduling

Our application is based on the city of Sioux Falls, South
Dakota, U.S. (see Fig, 5) [4]. This is a medium-sized city
with a population of 150,000, covering the characteristics
of large cities and rural areas. On average, the city had

around 37.5 COVID-19 confirmed cases per day [9]. We
selected this area for the experiments because the area is a
reasonable size in which the patients can be covered by a
single truck and multiple drones. This network segment of
Sioux Falls has 40 patients (i.e., yellow nodes within a 4-
mile radius, and they are labeled from 1 to 40 in Fig. 5 to
be served by one truck with three drones. The routes that
the truck can use are based on the existing road network
(i.e., bidirectional arcs in Fig. 5. The truck must stop to
release drones with testing kits or to pick up the drones
once their services are completed. The road conditions limit
the number of points that the truck can stop to 24 (i.e.,
red nodes labeled from ‘A’ to ‘X‘ in Fig. 5. Each drone

Fig. 6 Optimal Flight Schedule
and Drone Assignment to
Patients
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Fig. 7 Optimal Schedule for One Truck and Three Drones

can fly for a maximum of 26 min at an average flight
speed of 20 mph and that the atmospheric conditions are
stable during delivery. The truck can run for 200 min at an
average speed of 20 mph. Note that the speeds of drones
and the truck were set conservatively (i.e., slow) taking into
account unforeseen obstacles and traffic congestion during
the delivery. Therefore, the results discussed in this section
can be viewed as worst-case scenarios. In practice, the truck
can travel faster than 20 mph, which will result in a shorter
total delivery time. Furthermore, we assume that the service
time per patient is expected to last 3 min including delivery
of the test kit, and the waiting time for drones landing at
each truck stop is expected to be 5 min.

The optimal routes for the truck and three drones for
serving 40 patients are shown in Fig. 6, where black arcs
indicate the truck path while green arcs indicate the drone
paths. The three drones take off from the truck at an
intermediate node and return to the truck at a designated
(intermediate) node. The number of patients being served
on a given path varies truck specification and the drones

on-board (i.e., maximum drone flight range and the truck’s
stopping points). The three drones return to the depot (i.e.,
the red node labeled ‘C’ in Fig. 6) rather than the truck after
performing their final delivery mission from intermediate
nodes ‘A’ and ‘L’, respectively.

The Gantt chart in Fig. 7 illustrates specific sequences of
events (i.e., providing service or waiting to provide service)
for the truck and the three drones. The truck stops at 13
locations following the road network. At these stopping
points, the truck either picks up a drone that has completed
delivery or releases a drone for the next service assignment.
For our example, it took a total of 98 minutes to deliver a
testing kit to each of the 40 patients.

5.2 Discussion on the Solution Approach

The performance of a heuristic method is measured by
the speed for solving the problem and the quality of the
solution that it provides. We demonstrate the performance of
the proposed solution approach as discussed in Section 4.2

Fig. 8 The convergence of T S

and FS to optimal solution
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using a problem instance with 40 patients and 3 drones.
Figure 8 shows the progression of Algorithm 1 to solve the
problem. At time zero (t = 0), the Initialization stage starts
and T SPBFS returns an initial solution (a set of flights)
based on visiting one patient at each flight. In the following
step (t ∈ [5, 1900]), Exchange takes the initial solution and
attempts to minimize the total flight duration. As a result,
the number of flights required to visit all patients is reduced
by 75%.

In the next step, Heuristic Loop started and the loop
repeated twice until no further improvement was made,
t = 2600. As seen in Fig. 8, the reduced total flight time
achieved in the previous stage helped reduce T S as well
as the value of T S1

UB , and it reached the optimality gap
of 10% in less than 200 seconds. Final Loop started at
t = 2600 with an attempt to improve the lower-bound of the
FS model (FS4

LB ). Since it could not find any improvement
in FSUB after 600 seconds, the algorithm was terminated.

This example demonstrates the advantage of using the
decomposition and the recursive optimization proposed in
this paper, in which an improvement made in one level
directly helps improve the solution in the next step. As a
comparison to the exact method without the decomposition
approach, the MDRP took over 1 hour just to find an initial
feasible solution. Then, the Branch-and-Bound algorithm
took over 10 hours to reach 20% optimality gap before it
was terminated.

5.3 The Effect of Vehicle Speed on Total Completion
Time

Vehicle speed can affect the delivery completion time. The
network as shown in Fig. 5 with 40 customers is used to
investigate the effect of the total completion time (TCT)
as we vary the vehicle speed. For a fixed drone speed

of 20 mph, we vary the truck speed at 15, 20, 25, 30,
35, 40 mph and the results are plotted in Fig. 9a. The
total completion time (i.e.,

∑
(i,j)∈At

wti,j y
∗
i,j + ∑

i∈I w∗
i )

appears to decrease as the truck speed was increased until
35 mph. But the trend sharply reversed after 35 mph. This
is because at beyond 35 mph, the waiting time of the truck
to collect the drone increases. Hence, we further investigate
the effect of the TCT under 18 different vehicle scenarios:
six different speeds for the truck at 15, 20, 25, 30, 35, 40
mph and three different speeds at 15, 20, 25 mph for the
truck. Note that the drone speed was capped at 25 mph
because most small drones fly within this range. Figure 9b
shows the results of the experiments. We made following
observations. First, the TCT decreased as both vehicle
speeds were increased up to a certain point. Second, when
the speed of one vehicle was fixed, increasing the speed of
the other vehicle did not result in a monotonic decrease in
the TCT. Third, when the truck traveled much faster than
the drone, the truck ended up waiting longer for the drone,
which resulted in an increase in TCT.

5.4 The effect of the number of drones on total
completion time

One can expect that adding more drones can potentially
reduce the TCT. It is because having multiple drones allows
multiple deliveries to be carried out in parallel. Hence,
we investigate the effect of TCT on the number of drones
carried on the truck. Figure 10 shows the results of this
experiment. As we increase the number of drones, the
TCT monotonically decreased until 4 drones and converged
at 160. This indicates that adding more drones can help
reduce the TCT up to a certain point. Adding more drones
beyond this point does will not improve the performance
due to other factors affecting the TCT, but add unnecessary

Fig. 9 Total completion time vs. vehicle speed
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Fig. 10 The total completion time behaviour by increment in number
of drones

additional capital cost and computational burden for solving
the optimization model.

5.5 Public Health Implications with the MDRP Model

To determine the public health implications with the MDRP,
we propose a modified metric (i.e., mR0) of the basic
reproduction number (R0) to estimate how many secondary
cases might arise from a single infected case [13]. In
general, R0 value greater than 1 indicates that the disease
is spreading and the outbreak is continuing, while R0

value below 1 indicates that the disease is waning and
the outbreak is ending. The basic reproduction number is
generally determined by a disease’s infection period (e.g.,
the longer the infection period, the more contagious an
infected individual will be with the disease) and contact rate
(i.e., the number of people an infected individual comes
into contact with). The contact rate can be reduced through
well-established public health interventions that require
individuals to socially distance, quarantine, and/or stay at
home [22]. Mathematically, the basic reproduction number
is calculated as R0 = βS/γ , where β is the transmission rate
of the disease, S is the number of susceptible individuals in
a given population, and γ is the disease’s infection period.
However, the basic reproduction number is limited when

used to calculate the risk of infection in a specific region or
at a specific point in time [11, 15]. As such, the R0 can be
transformed to accommodate geographic, population, and
temporal modifications [14, 45]. For the MDRP model, we
modify the disease’s infection period to scale it to the total
scheduled time as:

γ̄ = Infection period (in days)

Total schedule time from MDRP (in days)
(53)

Accordingly, the modified reproduction rate is calculated as:

mR0 = βS/γ̄ (54)

Similar to R0, mR0 is defined so that a smaller value
corresponds to a better outcome (i.e., fewer infections).
The R0 is designed to measure the number of people
who might be infected during a complete incubation
period (e.g., approximately 14 days for COVID-19 [10]).
Therefore, it is not suitable to predict the number of
possible infections during a specific time period Hence, we
revised the metric by introducing γ̄ to predict the number
of possible infections over a specific period. Considering
the characteristics of face-to-face diagnosis and testing
kit delivery, it is possible to predict more accurately the
number of infections that may occur during a specific period
by assigning an appropriate transmission rate. Table 6
shows an example to show how this new measure works
and a comparison between a face-to-face testing approach
and the drone-based approach. In the case of face-to-face
diagnosis, it takes 3.3 hours to diagnose 40 patients, during
which about 0.0153 additional infections could occur. For
the same problem, the drone-based testing kit delivery
would take 1.63 hours to diagnose those patients. It is
estimated that approximately 0.002 additional infections
could occur during this time. Recall that if patients have
to travel to a testing site, there is a possibility of virus
transmission through an interaction between the patient and
the medical personnel or among the patients themselves.
To reduce that likelihood, patients are generally advised
to wear an appropriate face mask and follow the social
distancing guidelines. Therefore, we expect the MDRP to
help significantly reduce the spread of a pandemic.

Consider the example provided in Section 5.1; namely
40 patients and two delivery personnel (i.e., a truck driver
and a drone operator). An equivalent drive-through testing

Table 6 Estimated modified reproduction rate (mR0)

β (Transmission rate) S (no of person) γ̄ (Time period) mR0

Face-to-face test

(Drive-thru site) 3.1 % 52 101.82 0.0153

Testing kit delivery

using MDRP 1.0 % 42 205.73 0.002

(86.9% reduction)
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site would have the same number of patients but 10
medical personnel (i.e., five per testing to perform all of the
activities associated with the testing process). To calculate
comparable mR0 for these scenarios, we note the following.
According to Chu et al. (2020) if two people wearing masks
talk to each other within 6 feet, the transmission rate, β
was 3.1 %, and when both people did not wear masks,
the transmission rate (β) increased to 17.4 % [12]. During
the test for COVID-19 with a face-to-face method, patients
need to take off their masks for collecting samples, but
the sampling time is very short. Therefore, we assume that
the transmission rate of the face-to-face test is 0.031. If
the surface of a drone or testing kit is contaminated with
the virus, it is possible to spread the virus by contact with
it, but we expect it to be extremely low [1]. Hence, we
conservatively assume the transmission rate at 0.01. The
number of people at risk of infection (S) is 42 for MDRP
and 50 for the drive-thru testing site. The average recovery
period (γ ) (in days) is divided by the total testing (or
delivery) time (in days). As in current research [37], we
assume that the average recovery period is 14 days. Then,
for a face-to-face test, it takes about 10 minutes to collect a
sample per patient. Having two test booths on site, the total
time required for 40 patients would be approximately 3.3
hours (0.137 of a day). Then, dividing this value by 14 days,
the average recovery period of COVID-19 (γ ) is 101.82.
On the other hand, the minimum required time using the
MDRP was 1.63 hours (0.0681 of a day). Accordingly, γ for
this method will be 205.73, and mR0 for the drive-through
testing site is 0.0153 while MDRP’s mR0 is 0.002. This
means that during the face-to-face test of 40 patients, about
0.0153 new infection cases could occur (approximately one
secondary infection per 2,614 patients). With MDRP, it
would be one secondary infection per 20,000 patients. Thus,
the MDRP has the potential to significantly reduce the
transmission of a pandemic.

6 Conclusion

A delivery system consisting of a single truck and multiple
drones was studied in this paper, in which a truck was
considered as a mothership of drones and the group
of drones deliver testing kits for potential patients. The
ultimate goal of this study was to show that this hybrid
delivery model can be a great alternative to any in-person
diagnostic methods for the purpose of infection prevention.
Because the optimization model for solving this complex
problem is not scalable, a decomposition algorithm has been

proposed to develop a coordinated schedule of the truck
and the drones in a timely manner. The proposed solution
method consists of three stages: Initialization, Heuristic,
and Exact algorithm. In the initialization stage, a heuristic
algorithm, T SPBFS , is developed to find an initial solution
(i.e., feasible truck and flight paths). In the Heuristic
stage, Exchange heuristic is developed to improve the
MDRP solution starting from the initial solution. Using
the test problem, we showed that the Exchange algorithm
works fast in finding an improved solution by utilizing the
modified version of FS model and its embedded heuristic.
We have demonstrated that the proposed method can find
good quality solutions in a reasonable amount of time (less
than 44 minutes) as compared to the exact method that failed
to find an optimal solution in 10 hours for the test problem
instance. Furthermore, a modified reproduction metric (i.e.,
mR0) was proposed as a performance measure to show the
effectiveness of the proposed method. It considered the total
time to complete the delivery mission, the number of people
involved in the delivery process, and the transmission rate
of the virus. For comparison, we also derived the mR0 of
the face-to-face diagnosis. The results showed that mR0

of the testing kit delivery system (i.e., mR0=0.002) was
significantly lower than that of the face-to-face method (i.e.,
mR0=0.0153), hence, it achieved a 7.5 reduction compared
to a face-to-face diagnosis used in a ‘drive-thru’ testing site.

COVID-19 has greatly increased the awareness of
infectious diseases. We believe that the proposed testing
kit delivery method using the MDRP model can easily be
applied to other applications, especially, the diagnosis of
infectious diseases such as the seasonal flu, MERS, and
SARS. As an extension to this paper, one can develop a
scalable optimization model and solution algorithms for a
system of multiple trucks and multiple drones to support
larger densely populated cities or sparsely populated rural
areas. Another direction for future work is to investigate the
influence of traffic congestion, speed limit, traffic light and
other road driving restrictions in an optimization model.

Appendix: Launch-Return Location
Optimization Model

The LRO chooses an optimal set of launch and return
nodes for a current sets of patients to minimize the MDRP
objective function. Unlike MDRP, P and SP are pre-
determined in LRO. The primary purpose of this model is
to check the feasibility of an initial solution provided by
T SPBFS .
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min
f,w,h

LRO =
∑

(l,i,r)∈LFR

til,rf
i
l,r +

∑
i∈P

wi +
∑
i∈N

hi (55)

(7), (8), (32) (56)

Tpr − Tpl
+

r−1∑
k=l+1

wpk
− M(1 − f

j
pl,pr

)≤ t
j
pl ,pr

+
∑
i∈Sj

hi ∀(pl, j, pr) ∈ FLR (57)

t
j
pl ,pr

+
∑
i∈Sj

hi − M(1 − f
j
pl,pr

)≤ Tpr − Tpl
+

r∑
k=l

wpk
∀(pl, j, pr) ∈ FLR (58)

Dpi−1 − Dpi
=

∑
(l,j,pi )∈LFR

f
j
l,pi

−
∑

(pi ,j,r)∈LFR

f
j
pi ,r , i = 2, ..., |P | (59)

DC +
∑

(C,j,r)∈LFR

f
j
C,r= n (60)
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