Skip to main content
Log in

Experimentation and Simulation with Autonomous Coverage Path Planning for UAVs

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

UAVs have been widely used in many photography applications. Among photography tasks, covering an area to produce photogrammetry data is a prominent solution for commercial applications. The resources available to automate these processes, despite the many advances, still are somewhat scarce for practical deployment. In this research, the authors intend to bridge this gap by evaluating several simulated and real 3D models. The methods evaluated are also compared with current commercially available planners and the literature state of the art. The research uses seven heuristics methods to generate camera placement, another seven methods to generate offline planning, and seven methods to perform path planning. The tests include synthetic data for statistical significance, real 3D models, and simulations that allow a complete performance overview. Quantitative results will enable the user to visualize each method’s performance, while qualitative results will help to understand the results visually. Results are compiled in a path planning library for further research and development. They show that some methods can be 15% more cost-effective while being able to be still computed in a reasonable amount of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code Availability

The codes and information used will be made available in a github (https://github.com/IagoBiundini) in the future.

References

  1. Pinto, M.F., Honório, L.M., Marcato, A.L.M., Dantas, M.A.R., Melo, A.G., Capretz, M., Urdiales, C.: Arcog: an aerial robotics cognitive architecture. Robotica 39(3), 483–502 (2021)

    Article  Google Scholar 

  2. Utsav, A., Abhishek, A., Suraj, P., Badhai, R.K.R.: An Iot based Uav Network for military applications. In: Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Pages. 122–125. IEEE (2021)

  3. Pinto, M.F., Honorio, L.M., Melo, A., Marcato, A.L.M.: A robotic cognitive architecture for slope and dam inspections. Sensors 20(16), 4579 (2020)

    Article  Google Scholar 

  4. Biundini, I.Z., Pinto, M.F., Melo, A.G., Marcato, A.L.M., Honório, L.M., Aguiar, M.J.R.: A framework for coverage path planning optimization based on point cloud for structural inspection. Sensors 21(2), 570 (2021)

    Article  Google Scholar 

  5. Biundini, I.Z., Melo, A.G., Pinto, M.F., Marins, G.M., Marcato, A.L.M., Honorio, L.M.: Coverage path planning optimization for slopes and dams inspection. In: Iberian Robotics Conference, Pages. 513–523. Springer (2019)

  6. Li, X., Savkin, A.V.: Networked unmanned aerial vehicles for surveillance and monitoring: a survey. Future Internet 13(7), 174 (2021)

    Article  Google Scholar 

  7. Melo, A.G., Pinto, M.F., Marcato, A.L.M., Honório, L.M.: Dynamic optimization and heuristics based online coverage path planning in 3D environment for UAVs. Sensors 21(4), 1108 (2021)

    Article  Google Scholar 

  8. Murray, C.C., Raj, R.: The multiple flying sidekicks traveling salesman problem: parcel delivery with multiple drones. Transp. Res. C: Emerg. Technol. 110, 368–398 (2020)

    Article  Google Scholar 

  9. Pinto, M.F., Coelho, F.O., De Souza, J.P.C., Melo, A.G., Marcato, A.L.M., Urdiales, C.: Ekf design for online trajectory prediction of a moving object detected onboard of a Uav. In: 13Th APCA International Conference on Automatic Control and Soft Computing (CONTROLO), Pages. 407–412. IEEE (2018)

  10. Chaurasia, R., Mohindru, V.: Unmanned aerial vehicle (uav): a comprehensive survey. Unmanned Aerial Vehicles for Internet of Things (IoT) Concepts Techniques, and Applications, pp. 1–27 (2021)

  11. Buffi, G., Manciola, P., Grassi, S., Barberini, M., Gambi, A.: Survey of the ridracoli dam: Uav–based photogrammetry and traditional topographic techniques in the inspection of vertical structures. Geomat. Nat. Hazards and Risk 8(2), 1562–1579 (2017)

    Article  Google Scholar 

  12. Zhao, S., Kang, F., Li, J., Ma, C.: Structural health monitoring and inspection of dams based on uav photogrammetry with image 3d reconstruction. Autom. Constr. 130, 103832 (2021)

    Article  Google Scholar 

  13. Reagan, D., Sabato, A., Niezrecki, C.: Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges. Struct. Health Monit. 17(5), 1056–1072 (2018)

    Article  Google Scholar 

  14. Akbar, M.A., Qidwai, U., Jahanshahi, M.R.: An evaluation of image-based structural health monitoring using integrated unmanned aerial vehicle platform. Struct. Control. Health Monit. 26(1), e2276 (2019)

    Article  Google Scholar 

  15. Jin, J., Tang, L.: Coverage path planning on three-dimensional terrain for arable farming. J. Field Robot. 28(3), 424–440 (2011)

    Article  Google Scholar 

  16. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013)

    Article  Google Scholar 

  17. Kwon, B., Thangavelautham, J.: Autonomous coverage path planning using artificial neural tissue for aerospace applications. In: Aerospace Conference, pp. 1–10. IEEE (2020)

  18. Coelho, F.O., Carvalho, J.P., Pinto, M.F., Marcato, A.L.: Ekf and computer vision for mobile robot localization. In: 13Th APCA International Conference on Automatic Control and Soft Computing (CONTROLO), pp. 148–153. IEEE (2018)

  19. Yordanova, V., Gips, B.: Coverage path planning with track spacing adaptation for autonomous underwater vehicles. IEEE Robotics and Automation Letters 5(3), 4774–4780 (2020)

    Article  Google Scholar 

  20. Oksanen, T., Visala, A.: Coverage path planning algorithms for agricultural field machines. J. Field Robot. 26(8), 651–668 (2009)

    Article  MATH  Google Scholar 

  21. Paull, L., Saeedi, S., Seto, M., Li, H.: Sensor-driven online coverage planning for autonomous underwater vehicles. IEEE/ASME Transactions on Mechatronics 18(6), 1827–1838 (2012)

    Article  Google Scholar 

  22. Torres, M., Pelta, D.A., Verdegay, J.L., Torres, J.C.: Coverage path planning with unmanned aerial vehicles for 3d terrain reconstruction. Expert Syst. Appl. 55, 441–451 (2016)

    Article  Google Scholar 

  23. Shen, Z., Wilson, J.P., Gupta, S.: An online coverage path planning algorithm for curvature-constrained Auvs. In: OCEANS 2019 MTS/IEEE SEATTLE, pp. 1–5. IEEE (2019)

  24. Choi, D., Lee, E.C.M., Myung, H.: Online 3D coverage path planning using surface vector. In: 18Th International Conference on Ubiquitous Robots (UR), pp. 392–396. IEEE (2021)

  25. Han, J.: An efficient approach to 3d path planning. Inform. Sci. 478, 318–330 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou, Q., Gao, S.: 3d uav path planning using global-best brain storm optimization algorithm and artificial potential field. In: International Conference on Intelligent Robotics and Applications, pp. 765–775. Springer (2019)

  27. Pérez-Hurtado, I., Martínez-del Amor, M.Á., Zhang, G., Neri, F., Pérez-Jiménez, M.J.: A membrane parallel rapidly-exploring random tree algorithm for robotic motion planning Integrated Computer-Aided Engineering, (Preprint), pp. 1–18 (2020)

  28. Blasi, Luciano, D’Amato, Egidio, Mattei, Massimiliano, Notaro, Immacolata: Path planning and real-time collision avoidance based on the essential visibility graph. Appl. Sci. 10(16), 5613 (2020)

    Article  Google Scholar 

  29. Toth, J., Pouliot, N., Montambault, S.: Field experiences using linescout technology on large bc transmission crossings. In: 1St International Conference on Applied Robotics for the Power Industry, pp. 1–6. IEEE (2010)

  30. Jenssen, R., Roverso, D., et al.: Intelligent monitoring and inspection of power line components powered by uavs and deep learning. IEEE Power and Energy Technology Systems Journal 6(1), 11–21 (2019)

    Article  Google Scholar 

  31. Morgenthal, G., Hallermann, N.: Quality assessment of unmanned aerial vehicle (uav) based visual inspection of structures. Adv. Struct. Eng. 17(3), 289–302 (2014)

    Article  Google Scholar 

  32. Meinen, B.U., Robinson, D.T.: Mapping erosion and deposition in an agricultural landscape: Optimization of uav image acquisition schemes for sfm-mvs. Remote Sens. Environ. 239, 111666 (2020)

    Article  Google Scholar 

  33. Wallace, L., Lucieer, A., Malenovskỳ, Z., Turner, D., Vopênka, P.: Assessment of forest structure using two uav techniques: a comparison of airborne laser scanning and structure from motion (sfm) point clouds. Forests 7(3), 62 (2016)

    Article  Google Scholar 

  34. Carrera-Hernández, J.J., Levresse, G., Lacan, P.: Is uav-sfm surveying ready to replace traditional surveying techniques? Int. J. Remote Sens. 41(12), 4820–4837 (2020)

    Article  Google Scholar 

  35. Ouédraogo, M.M., Degré, A., Debouche, C., Lisein, J.: The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds. Geomorphology 214, 339–355 (2014)

    Article  Google Scholar 

  36. Sona, G., Pinto, L., Pagliari, D., Passoni, D., Gini, R.: Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Sci. Inform. 7(2), 97–107 (2014)

    Article  Google Scholar 

  37. Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M.: Structure-from-motion’photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314 (2012)

    Article  Google Scholar 

  38. Artese, S., Perrelli, M.: Monitoring a landslide with high accuracy by total station: a DTM-based model to correct for the atmospheric effects. Geosciences 8(2), 46 (2018)

    Article  Google Scholar 

  39. Myers, D.T., Rediske, R.R., McNair, J.N.: Measuring streambank erosion: a comparison of erosion pins, total station, and terrestrial laser scanner. Water 11(9), 1846 (2019)

    Article  Google Scholar 

  40. James, M.R., Robson, S., d’Oleire Oltmanns, S., Niethammer, U: Optimising UAV topographic surveys processed with structure-from-motion: ground control quality, quantity and bundle adjustment. Geomorphology 280, 51–66 (2017)

    Article  Google Scholar 

  41. Dai, F., Feng, Y., Hough, R.: Photogrammetric error sources and impacts on modeling and surveying in construction engineering applications. Vis. Eng. 2(1), 2 (2014)

    Article  Google Scholar 

  42. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in Real-Time. In: International Conference on Computer Vision, pp. 2320–2327. IEEE (2011)

  43. Li, J., Bi, Y., Lan, M., Qin, H., Mo, Shan, Lin, F., Chen, B.M.: Real-Time simultaneous localization and mapping for Uav: a survey. In: Proc. of International Micro Air Vehicle Competition and Conference, vol. 2016. pp. 237 (2016)

  44. Ellefsen, K.O., Lepikson, H.A., Albiez, J.C.: Multiobjective coverage path planning: enabling automated inspection of complex, real-world structures. Appl. Soft Comput. 61, 264–282 (2017)

    Article  Google Scholar 

  45. Kapoutsis, A.C., Chatzichristofis, S.A., Kosmatopoulos, E.B.: Darp: divide areas algorithm for optimal multi-robot coverage path planning. Journal of Intelligent & Robotic Systems 86(3-4), 663–680 (2017)

    Article  Google Scholar 

  46. Azpúrua, H., Freitas, G.M., Macharet, D.G., Campos, M.F.M.: Multi-robot coverage path planning using hexagonal segmentation for geophysical surveys. Robotica 36(8), 1144–1166 (2018)

    Article  Google Scholar 

  47. Lakshmanan, A.K., Mohan, R.E., Ramalingam, B., Le, A.V., Veerajagadeshwar, P., Tiwari, K., Ilyas, M.: Complete coverage path planning using reinforcement learning for tetromino based cleaning and maintenance robot. Autom. Constr. 112, 103078 (2020)

    Article  Google Scholar 

  48. Theile, M., Bayerlein, H., Nai, R., Gesbert, D., Caccamo, M.: UAV coverage path planning under varying power constraints using deep reinforcement learning. In: IEEE RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1444–1449. IEEE (2020)

  49. Van Thieu, N.: A collection of the state-of-the-art meta-heuristics algorithms in python: Mealpy. Zenodo. https://doi.org/10.5281/zenodo.3711948 (2020)

  50. Cao, Z.L., Huang, Y., Hall, E.L.: Region filling operations with random obstacle avoidance for mobile robots. J. Robot. Syst. 5(2), 87–102 (1988)

    Article  Google Scholar 

  51. Choset, H.: Coverage for robotics–a survey of recent results. Ann. Math. Artif. Intell. 31(1–4), 113–126 (2001)

    Article  MATH  Google Scholar 

  52. Aggarwal, S., Kumar, N.: Path planning techniques for unmanned aerial vehicles: a review, solutions, and challenges. Comput. Commun. 149, 270–299 (2020)

    Article  Google Scholar 

  53. Singh, H.K., Deb, K.: Investigating the equivalence between PBI and AASF scalarization for multi-objective optimization. Swarm Evol. Comput. 53, 100630 (2020)

    Article  Google Scholar 

  54. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  55. Yang, X.S.: Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing and Natural Computation, pp. 240–249. Springer (2012)

  56. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. IEEE (1995)

  57. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185(3), 1155–1173 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer (2010)

  59. Meng, X.B., Gao, X.Z., Lu, L., Liu, Y., Zhang, H.: A new bio-inspired optimisation Bird swarm algorithm. J. Exp. Theor. Artif. Intell 28(4), 673–687 (2016)

    Article  Google Scholar 

  60. Van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated annealing. In: Simulated Annealing: Theory and Applications, pp. 7–15. Springer (1987)

  61. García, J., Molina, J.M.: Simulation in real conditions of navigation and obstacle avoidance with px4/gazebo platform. Pers. Ubiquit. Comput. pp. 1–21 (2020)

  62. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W: Octomap: an efficient probabilistic 3d mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013)

    Article  Google Scholar 

  63. Griffiths, D., Burningham, H.: Comparison of pre-and self-calibrated camera calibration models for UAS-derived nadir imagery for a SFM application. Progress in Physical Geography: Earth and Environment 43(2), 215–235 (2019)

    Article  Google Scholar 

  64. St, L, Wold, S., et al.: Analysis of variance (anova). Chemometr. Intell. Lab. Syst. 6(4), 259–272 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following Brazilian Federal Agencies UFJF, CEFET-RJ, CAPES, CNPq, FAPERJ, INCT–INERGE, ANEEL P&D Program and INESC Brazil for supporting this research.

Funding

The authors would like to thank the following Brazilian Federal Agencies UFJF, CEFET-RJ, CAPES, CNPq, FAPERJ, INCT–INERGE, ANEEL P&D Program and INESC Brazil for supporting this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Iago Z. Biundini, Aurélio G. Melo, Fabricio O. Coelho and Milena F. Pinto. The supervision and resources were performed by Leonardo M. Honório, Milena F. Pinto, and André L. M. Marcato; The first draft of the manuscript was written by Iago Z. Biundini, Aurélio G. Melo and Milena F. Pinto all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Iago Z. Biundini.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biundini, I.Z., Melo, A.G., Coelho, F.O. et al. Experimentation and Simulation with Autonomous Coverage Path Planning for UAVs. J Intell Robot Syst 105, 46 (2022). https://doi.org/10.1007/s10846-022-01654-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01654-9

Keywords

Navigation