Skip to main content
Log in

Adaptive Neural Learning Finite-Time Control for Uncertain Teleoperation System with Output Constraints

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Restricted by operation time and workspace, the end effector of robot needs to complete teleoperation tasks within the shortest possible time while satisfying physical constraints. To address the above issues, a novel adaptive neural learning finite-time control scheme with a modified funnel variable is developed. The developed approach considers the comprehensive characteristics of finite-time convergence and asymptotic convergence. Compared with the existing approach, prescribed performance and higher convergence rate can be guaranteed. In this study, neural networks are utilized to approximate various uncertainties, and a robust term is further employed to eliminate unknown external disturbances and estimation biases of neural networks. The previous passivity issue is avoided by replacing the signals transmitted on the cyber channel with virtual environmental parameters instead of high-frequency force signals. The transparency and task performance of the developed approach have been improved to a certain extent. Numerical simulations and experiments are conducted on a teleoperation platform consisting of a pair of Phantom Omni 3D Touch robots to validate the feasibility and availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kofman, J., Wu, X., Luu, T.J., Verma, S.: Teleoperation of a robot manipulator using a vision-based human-robot interface. IEEE Trans. Industr. Electron. 52(5), 1206–1219 (2005)

    Article  Google Scholar 

  2. Hokayem, P.F, Spong, M.W: Bilateral teleoperation: An historical survey. Automatica 42 (12), 2035–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lichiardopol, S.: A survey on teleoperation. Technische Universitat Eindhoven DCT Report 20, 40–60 (2007)

    Google Scholar 

  4. Liu, Y., Nejat, G.: Robotic urban search and rescue: a survey from the control perspective. J. Intell. Robot. Syst. 72(2), 147–165 (2013)

    Article  Google Scholar 

  5. Niemeyer, G., Slotine, J.-J.E.: Telemanipulation with time delays. Int. J. Robot. Res. 23(9), 873–890 (2004)

    Article  Google Scholar 

  6. Chan, L., Naghdy, F., Stirling, D.: Application of adaptive controllers in teleoperation systems: a survey. IEEE Trans. Hum.-Mach. Syst. 44(3), 337–352 (2014)

    Article  Google Scholar 

  7. Kebria, P.M, Abdi, H., Dalvand, M.M., Khosravi, A., Nahavandi, S.: Control methods for internet-based teleoperation systems: a review. IEEE Trans. Hum.-Mach. Syst. 49(1), 32–46 (2018)

    Article  Google Scholar 

  8. Lee, D., Spong, M.W: Passive bilateral teleoperation with constant time delay. IEEE Trans. Robot. 22(2), 269–281 (2006)

    Article  Google Scholar 

  9. Nuño, E., Ortega, R., Barabanov, N., Basañez, L.: A globally stable pd controller for bilateral teleoperators. IEEE Trans. Robot. 24(3), 753–758 (2008)

    Article  Google Scholar 

  10. Zhenyu, L u, Huang, P., Liu, Z.: High-gain nonlinear observer-based impedance control for deformable object cooperative teleoperation with nonlinear contact model. Int. J. Robust Nonlinear Control. 30 (4), 1329–1350 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Willaert, B., Reynaerts, D., van Brussel, H., Poorten, E.B.: Vander Bilateral teleoperation: Quantifying the requirements for and restrictions of ideal transparency. IEEE Trans. Control Syst. Technol. 22(1), 387–395 (2014)

    Article  Google Scholar 

  12. Yang, C., Wang, X., Li, Z., Li, Y., Su, C.-Y.: Teleoperation control based on combination of wave variable and neural networks. IEEE Trans. Syst. Man Cybern.: Syst. 47(8), 2125–2136 (2017)

    Article  Google Scholar 

  13. Shokri-Ghaleh, H., Alfi, A.: Bilateral control of uncertain telerobotic systems using iterative learning control: Design and stability analysis. Acta Astronaut. 156, 58–69 (2019)

    Article  Google Scholar 

  14. Ma, Z., Liu, Z., Huang, P.: Fractional-order control for uncertain teleoperated cyber-physical system with actuator fault. IEEE/ASME Trans. Mechatron. 14(8), 1–14 (2020)

    Google Scholar 

  15. Djordjevic, V., Stojanovic, V., Tao, H., Song, X., He, S., Gao, W.: Data-driven control of hydraulic servo actuator based on adaptive dynamic programming. Discrete & Continuous Dynamical Systems-S (2021)

  16. Fang, H., Zhu, G., Stojanovic, V., Nie, R., He, S., Luan, X., Liu, F.: Adaptive optimization algorithm for nonlinear markov jump systems with partial unknown dynamics. Int. J. Robust Nonlinear Control. 31(6), 2126–2140 (2021)

    Article  MathSciNet  Google Scholar 

  17. Wei, H., Amoateng, D.O., Yang, C., Gong, D.: Adaptive neural network control of a robotic manipulator with unknown backlash-like hysteresis. IET Control Theory & Applications. 11(4), 567–575 (2017)

    Article  MathSciNet  Google Scholar 

  18. Chen, Z., Huang, F., Sun, W., Gu, J., Yao, B.: Rbf-neural-network-based adaptive robust control for nonlinear bilateral teleoperation manipulators with uncertainty and time delay. IEEE/ASME Trans. Mechatron. 25(2), 906–918 (2019)

    Article  Google Scholar 

  19. Chen, Z., Huang, F., Yang, C., Yao, B.: Adaptive fuzzy backstepping control for stable nonlinear bilateral teleoperation manipulators with enhanced transparency performance. IEEE Trans. Industr. Electron. 67(1), 746–756 (2020)

    Article  Google Scholar 

  20. Salloom, T., Yu, X., He, W., Kaynak, O.: Adaptive neural network control of underwater robotic manipulators tuned by a genetic algorithm. J. Intell. Robot. Syst. 97(3), 657–672 (2020)

    Article  Google Scholar 

  21. Wang, H., Liu, P.X., Liu, S.: Adaptive neural synchronization control for bilateral teleoperation systems with time delay and backlash-like hysteresis. IEEE Trans. Cybern. 47(10), 3018–3026 (2017)

    Article  Google Scholar 

  22. Li, Z., Xia, Y., Wang, D., Zhai, D.H., Su, C.Y., Zhao, X.: Neural network-based control of networked trilateral teleoperation wwith geometrically unknown constraints. IEEE Trans. Cybern. 46 (5), 1051 (2016)

    Article  Google Scholar 

  23. Zhilu, X u, Li, X., Stojanovic, V.: Exponential stability of nonlinear state-dependent delayed impulsive systems with applications. Nonlinear Anal. Hybrid Syst. 42, 101088 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, H., Huang, P., Liu, Z.: Mode switching based symmetric predictive control mechanism for networked teleoperation space robot system. IEEE/ASME Trans. Mechatron. 24(6), 2706–2717 (2019)

    Article  Google Scholar 

  25. Yang, Y., Hua, C., Guan, X.: Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system. IEEE Trans. on Fuzzy Syst. 22(3), 631–641 (2013)

    Article  Google Scholar 

  26. Yang, Y., Hua, C., Li, J., Guan, X.: Finite-time output-feedback synchronization control for bilateral teleoperation system via neural networks. Information Sciences. 406, 216–233 (2017)

    Article  MATH  Google Scholar 

  27. Zhai, D.-H., Xia, Y.: Adaptive finite-time control for nonlinear teleoperation systems with asymmetric time-varying delays. Int. J. Robust Nonlinear Control. 26(12), 2586–2607 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Z., Xue, T., Liang, B., Chen, Z.: Backstepping based robust control for space tele-robot systems with finite-time convergence. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp 1419–1424. IEEE (2018)

  29. Zhang, H., Song, A., Li, H., Shen, S.: Novel adaptive finite-time control of teleoperation system with time-varying delays and input saturation. IEEE Trans. Cybern. 51(7), 3724–3737 (2019)

    Article  Google Scholar 

  30. Shen, H., Pan, Y.J.: Improving tracking performance of nonlinear uncertain bilateral teleoperation systems with time-varying delays and disturbances. IEEE/ASME Trans. Mechatron. 25(3), 1171–1181 (2019)

    Article  Google Scholar 

  31. Zhang, X., He, S., Stojanovic, V., Luan, X., Liu, F.: Finite-time asynchronous dissipative filtering of conic-type nonlinear markov jump systems. Sci. China Inform. Sci. 64(5), 1–12 (2021)

    MathSciNet  Google Scholar 

  32. Ilchmann, A., Ryan, E.P, Sangwin, C.J.: Tracking with prescribed transient behaviour. ESAIM: Control Optimisation and Calculus of Variations 7, 471–493 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Wang, H., Zou, Y., Liu, P.X., Liu, X.: Robust fuzzy adaptive funnel control of nonlinear systems with dynamic uncertainties. Neurocomputing 314, 299–309 (2018)

    Article  Google Scholar 

  34. Liu, C., Wang, H., Liu, X., Zhou, Y.: Adaptive finite-time fuzzy funnel control for nonaffine nonlinear systems. IEEE Trans. Syst. Man Cybern.: Syst. 51(5), 2894–2903 (2019)

    Article  Google Scholar 

  35. Bu, X.: Air-breathing hypersonic vehicles funnel control using neural approximation of non-affine dynamics. IEEE/ASME Trans. Mechatron. 23(5), 2099–2108 (2018)

    Article  Google Scholar 

  36. Bao, J., Wang, H., Liu, P.X.: Adaptive finite-time tracking control for robotic manipulators with funnel boundary. Int. J. Adaptive Control Signal Process. 34(5), 575–589 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, X., Deng, W., Yao, J.: Neural adaptive dynamic surface asymptotic tracking control of hydraulic manipulators with guaranteed transient performance. IEEE Trans. Neur. Net. Lear. Syst (2022)

  38. Han, S.I, Lee, J.M: Fuzzy echo state neural networks and funnel dynamic surface control for prescribed performance of a nonlinear dynamic system. IEEE Trans. Industr. Electron. 61(2), 1099–1112 (2013)

    Article  Google Scholar 

  39. Wang, S., Yu, H., Yu, J., Na, J., Ren, X.: Neural-network-based adaptive funnel control for servo mechanisms with unknown dead-zone. IEEE Trans. Cybern. 50(4), 1383–1394 (2018)

    Article  Google Scholar 

  40. Kong, L., Lai, Q., Ouyang, Y., Li, Q., Zhang, S.: Neural Learning Control of a Robotic Manipulator with Finite-Time Convergence in the Presence of Unknown Backlash-Like Hysteresis. IEEE Trans. Syst. Man Cybern. Syst. (2020)

  41. Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control. 21(6), 686–702 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hwang, C.-L., Hung, J.Y.: Stratified adaptive finite-time tracking control for nonlinear uncertain generalized vehicle systems and its application. IEEE Trans. Control Syst. Technol. 27(3), 1308–1316 (2018)

    Article  Google Scholar 

  43. Liu, X., Wang, H., Gao, C., Chen, M.: Adaptive fuzzy funnel control for a class of strict feedback nonlinear systems. Neurocomputing. 241, 71–80 (2017)

    Article  Google Scholar 

  44. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot modeling and control. Industrial Robot An Int. J. 17(5), 709–737 (2006)

    Google Scholar 

  45. Polushin, I.G., Liu, P.X., Lung, C.-H.: A control scheme for stable force-reflecting teleoperation over IP networks. IEEE Trans. Syst. Man Cybern. Part B (Cybern). 36(4), 930–939 (2006)

    Article  Google Scholar 

  46. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica. 41(11), 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Bakhshi, A., Alfi, A., Talebi, H.A., Souratgar, A.A., Yousefi, M.: Stability analysis and performance evaluation of delayed bilateral telerobotic systems over a lossy communication channel. J. Syst. Sci. Complex. 34(1), 157–179 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This research is sponsored by the National Natural Science Foundation of China (Grant No. 61725303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panfeng Huang.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, Z., Ma, Z. et al. Adaptive Neural Learning Finite-Time Control for Uncertain Teleoperation System with Output Constraints. J Intell Robot Syst 105, 76 (2022). https://doi.org/10.1007/s10846-022-01675-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01675-4

Keywords

Navigation