Skip to main content
Log in

A Review of Collaborative Air-Ground Robots Research

  • Review Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The collaboration of heterogeneous robots is a hot topic in multi-intelligent agents, characterized by wide-area coverage and high environmental adaptability. Compared with a single-intelligent agent, multi-intelligent agent collaboration presents superior data matching, system redundancy, and robustness. At the same time, the complementarity of heterogeneous multi-robot is formed a cross-domain, which inherently improves its perception capability, execution capability, and operational efficiency in the complex environment. Therefore, multi-intelligent agents’ organic coordination and cross-domain collaboration will lead to a new paradigm of future robotics and applications. This paper reviews air-ground collaboration, the Unmanned Ground Vehicles (UGVs), and Unmanned Aerial Vehicles (UAVs) collaborative system as the research targets. Firstly, the essential elements of UGVs and UAVs are introduced. Secondly, the types of equipment, sensors, missions, environments, metrics under heterogeneous robotic platforms, and how to make device selections in which tasks and scenarios are classified. Thirdly, several vital roles in the air-ground collaborative systems are identified. Finally, a multi-level classification of air-ground collaboration in funded projects, competitions, unique scenarios, inspirations, platforms, and challenges is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code or Data Availability

Not applicable.

References

  1. Ingrand, F., Ghallab, M.: Deliberation for autonomous robots: a survey. Artif. Intell. 247, 10–44 (2017)

    Article  MathSciNet  Google Scholar 

  2. Deng, C.J., Liu, G.M., Qu, F.C., He, X.F., Zhang, S.Q.: Survey of important issues in multi unmanned aerial vehicles imaging system. Int. J. Softw. Hardware Res. Eng.: 28–38 (2018)

  3. Shakhatreh, H., Sawalmeh, A.H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N.S., Khreishah, A., Guizani, M.: Unmanned aerial vehicles (uavs): a survey on civil applications and key research challenges. IEEE Access 7, 48572–48634 (2019)

    Article  Google Scholar 

  4. Cheng, W., Jiang, B., Zhang, K., Ding, S.X.: Robust finite-time cooperative formation control of UGV-UAV with model uncertainties and actuator faults. J. Franklin Inst. 358(17), 8811–8837 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Djordjevic, V., Stojanovic, V., Tao, H., Song, X., He, S., Gao, W.: Data-driven control of hydraulic servo actuator based on adaptive dynamic programming. Discrete Contin. Dyn. Syst.-S. 15(7), 1633–1650 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mehmood, S., Ahmed, S., Kristensen, A. S., Ahsan, D.: Multi criteria decision analysis (mcda) of unmanned aerial vehicles (uavs) as a part of standard response to emergencies. In: 4th International Conference on Green Computing and Engineering Technologies Gyancity International Publishers. pp. 1–31 (2018)

  7. Roberts, W., Griendling, K., Gray, A., Mavris, D.: Unmanned vehicle collaboration research environment for maritime search and rescue. In: 30th Congress of the International Council of the Aeronautical Sciences. Bonn, Germany: International Council of the Aeronautical Sciences (ICAS). pp. 1–14 (2016)

  8. Sung, Y.: Multi-robot coordination for hazardous environmental monitoring. Doctoral dissertation, Virginia Polytechnic Institute and State University. pp. 1–1143 (2019)

  9. Lu, C., Guo, J.: Complementary filter for UAV control under complex flight. Int. Core J. Eng. 7(3), 174–178 (2021)

    Google Scholar 

  10. Zhou, L., Tao, H., Paszke, W., Stojanovic, V., Yang, H.: PD-type iterative learning control for uncertain spatially interconnected systems. Mathematics. 8(9), 1528, pp. 1–18 (2020)

  11. Ran, H., Sun, L., Cheng, S., Ma, Y., Yan, S., Meng, S., Shi, K.B., Wen, S.: A novel cooperative searching architecture for multi-unmanned aerial vehicles under restricted communication. Asian J. Control 24(2), 510–516 (2022)

    Article  Google Scholar 

  12. Hayat, S., Yanmaz, E., Muzaffar, R.: Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint. IEEE Commun. Surv. Tutorials 18(4), 2624–2661 (2016)

    Article  Google Scholar 

  13. Khan, M.A., Sayed, H.E., Malik, S., Zia, T., Khan, J., Alkaabi, N., Ignatious, H.: Level-5 autonomous driving—are we there yet? A review of research literature. ACM Comput. Surv. 55(2), 1–38 (2022)

    Article  Google Scholar 

  14. Fadadu, S., Pandey, S., Hegde, D., Shi, Y., Chou, F.C., Djuric, N., Vallespi, G.C.: Multi-view fusion of sensor data for improved perception and prediction in autonomous driving. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 2349–2357 (2022)

  15. Min, H., Xiong, X., Wang, P., Yu, Y.: Autonomous driving path planning algorithm based on improved A* algorithm in unstructured environment. Proc. Inst. Mech. Eng. Pt. D J. Automobile Eng. 235(2–3), 513–526 (2021)

    Article  Google Scholar 

  16. Zhang, X., Wang, H., Stojanovic, V., Cheng, P., He, S., Luan, X., Liu, F.: Asynchronous fault detection for interval type-2 fuzzy nonhomogeneous higher-level Markov jump systems with uncertain transition probabilities. IEEE Trans. Fuzzy Syst. 1–13 (2021)

  17. Zhang, J., Hou, J., Hu, J., Zhao, C., Xu, Z., Cheng, C.: UGV autonomous driving system design for unstructed environment. In 2021 40th Chinese Control Conference (CCC). IEEE, pp. 4157–4162 (2021)

  18. Stentz, T., Kelly, A., Herman, H., Rander, P., Amidi, O., Mandelbaum, R.: Integrated air/ground vehicle system for semi-autonomous off-road navigation [C]. AUVSI Symposium, Unmaned Systems. pp. 1-15 (2002)

  19. Rao, R., Kumar, V.,  Taylor, C.: Visual serving of a UGV from a UAV using differential flatness. IEEE/rsj International Conference on Intelligent Robots and Systems. IEEE. Vol. 1, pp. 743–748 (2003)

  20. Sofman, B., Bagnell, J. A., Stentz, A., Vandapel, N.: Terrain classification from aerial data to support ground vehicle navigation[J]. Carnegie Mellon University. pp. 1–6 (2006)

  21. De Petrillo, M., Beard, J., Gu, Y., Gross, J.N.: Search planning of a uav/ugv team with localization uncertainty in a subterranean environment. IEEE Aerosp. Electron. Syst. Mag. 36(6), 6–16 (2021)

    Article  Google Scholar 

  22. Heckman, N., Lalonde, J.F., Vandapel, N., Hebert, M.: Potential negative obstacle detection by occlusion labeling. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 2168–2173 (2007)

  23. Bezzo, N., Griffin, B., Cruz, P., Donahue, J., Fierro, R., Wood, J.: A cooperative heterogeneous mobile wireless mechatronic system. IEEE/ASME Trans. Mechatron. 19(1), 20–31 (2012)

    Article  Google Scholar 

  24. Goodin, C., Carrillo, J., Monroe, J.G., Carruth, D.W., Hudson, C.R.: An analytic model for negative obstacle detection with lidar and numerical validation using physics-based simulation. Sensors. 21(9), 3211, pp. 1–14 (2021)

  25. Klodt, L., Khodaverdian, S., Willert, V.: Motion control for UAV-UGV cooperation with visibility constraint. In: 2015 IEEE Conference on Control Applications (CCA). pp. 1379–1385 (2015)

  26. Ye, T., Zhang, J., Li, Y., Zhang, X., Zhao, Z., Li, Z.: CT-Net: an efficient network for low-altitude object detection based on convolution and transformer. IEEE Trans. Instrum. Meas. 71, 1–12 (2022)

    Google Scholar 

  27. Wang, L.C., Gačanin, H., Niyato, D., Chen, Y.J., Liu, C.H., Anpalagan, A.: Artificial intelligence for autonomous vehicular communication networks. IEEE Veh. Technol. Mag. 17(2), 83–84 (2022)

    Article  Google Scholar 

  28. Ying, B., Su, Z., Xu, Q., Ma, X.: Game theoretical bandwidth allocation in UAV-UGV collaborative disaster relief networks. In: 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), pp. 1498–1504 (2021)

  29. Ren, S., Chen, R., Gao, W.: A UAV UGV Collaboration paradigm based on situation awareness: framework and simulation. In: International Conference on Autonomous Unmanned Systems. Springer, Singapore, pp. 3398–3406 (2021)

  30. Chen, J., Zhang, X., Xin, B., Fang, H.: Coordination between unmanned aerial and ground vehicles: a taxonomy and optimization perspective. IEEE Trans. Cybern. 46(4), 959–972 (2015)

    Article  Google Scholar 

  31. Duan, H., Liu, S.: Unmanned air/ground vehicles heterogeneous cooperative techniques: current status and prospects. Sci. China Technol. Sci. 53(5), 1349–1355 (2010)

    Article  Google Scholar 

  32. Waslander, S.L.: Unmanned aerial and ground vehicle teams: recent work and open problems. Autonomous control systems and vehicles. pp. 21–36 (2013)

  33. Çaşka, S., Gayretli, A.: A survey of UAV/UGV collaborative systems. Proc. 44th Int. Conf. Computers and Industrial Engineering (CIE44), Vol. 14, Istanbul, Turkey, pp. 453–463 (2014)

  34. Cajo, R., Mac, T.T., Plaza, D., Copot, C., De Keyser, R., Ionescu, C.: A survey on fractional order control techniques for unmanned aerial and ground vehicles. IEEE Access 7, 66864–66878 (2019)

    Article  Google Scholar 

  35. Sakai, S., Iida, M., Osuka, K., Umeda, M.: Design and control of a heavy material handling manipulator for agricultural robots. Auton. Robot. 25(3), 189–204 (2008)

    Article  Google Scholar 

  36. Siegwart, R., Nourbakhsh, I. R., Scaramuzza, D.: Introduction to autonomous mobile robots. MIT press. pp. 1–15 (2011)

  37. Wang, K., Ke, Y., Chen, B.M.: Autonomous reconfigurable hybrid tail-sitter UAV U-Lion[J]. Science China Information Sciences. pp. 1–16 (2017)

  38. Ruan, W.Y., Duan, H.B.: Multi-UAV obstacle avoidance control via multi-objective social learning pigeon-inspired optimization. Front. Inf. Technol. Electron. Eng. 21(5), 740–748 (2020)

    Article  Google Scholar 

  39. Wang, T.M., Zhang, Y.C., Liang, J.H., Chen, Y., Wang, C.L.: Multi-UAV collaborative system with a feature fast matching algorithm. Front. Inf. Technol. Electron. Eng. 21(12), 1695–1712 (2020)

    Article  Google Scholar 

  40. Tokekar, P., Vander Hook, J., Mulla, D., Isler, V.: Sensor planning for a symbiotic UAV and UGV system for precision agriculture. IEEE Trans. Rob. 32(6), 1498–1511 (2016)

    Article  Google Scholar 

  41. Parker, L.E.: Distributed intelligence: overview of the field and its application in multi-robot systems. J. Phys. Agents 2(1) (2008)

  42. Lazna, T., Gabrlik, P., Jilek, T., Zalud, L.: Cooperation between an unmanned aerial vehicle and an unmanned ground vehicle in highly accurate localization of gamma radiation hotspots. Int J Adv Robot Syst 15(1), 1729881417750787. pp. 1–16 (2018)

  43. National Research Council, Technology Development for Army Unmanned Ground Vehicles. National Academies Press. pp. 1–160 (2003)

  44. Hu, C., Wang, Y., Wang, R., Zhang, T., Cai, J., Liu, M.: An improved radar detection and tracking method for small UAV under clutter environment. Sci. China Inf. Sci. 62(2), 1–3 (2019)

    Article  Google Scholar 

  45. Ding, Y., Xin, B., Chen, J.: Precedence-constrained path planning of messenger UAV for air-ground coordination. Control Theory Technol. 17(1), 13–23 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yu, L.D., Bin, X., Jie, C., Hao, F., Yang, G.Z., Guan, Q.G., Li, H.D.: Path planning of messenger uav in air-ground coordination. IFAC-PapersOnLine 50(1), 8045–8051 (2017)

    Article  Google Scholar 

  47. Stentz, A., Kelly, A., Rander, P., Herman, H., Amidi, O., Mandelbaum, R., Salgian, J., Pedersen, J.: Real-time, multi-perspective perception for unmanned ground vehicles. Proc. AUVSI Unmanned Systems Symp. pp. 1–15 (2003)

  48. Vandapel, N., Donamukkala, R.R., Hebert, M.: Unmanned ground vehicle navigation using aerial ladar data. Int. J. Robot. Res. 25(1), 31–51 (2006)

    Article  Google Scholar 

  49. Käslin, R., Fankhauser, P., Stumm, E., Taylor, Z., Mueggler, E., Delmerico, J., Scaramuzza, R., Siegwart, M., Hutter, M.: Collaborative localization of aerial and ground robots through elevation maps. In: 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). pp. 284–290 (2016)

  50. Zhang, S., Wang, H., He, S., Zhang, C., Liu, J.: An autonomous air-ground cooperative field surveillance system with quadrotor UAV and unmanned ATV robots. In: 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). pp. 1527–1532 (2018)

  51. Peterson, J., Chaudhry, H., Abdelatty, K., Bird, J., Kochersberger, K.: Online aerial terrain mapping for ground robot navigation. Sensors 18(2), 630, pp. 1–22 (2018)

  52. Kim, J.H., Kwon, J.W., Seo, J.: Multi-UAV-based stereo vision system without GPS for ground obstacle mapping to assist path planning of UGV. Electron. Lett. 50(20), 1431–1432 (2014)

    Article  Google Scholar 

  53. Ropero, F., Muñoz, P., R-Moreno, M.D.: TERRA: A path planning algorithm for cooperative UGV–UAV exploration. Eng. Appl. Artif. Intell. 78, 260–272 (2019)

    Article  Google Scholar 

  54. Zhu, M., Wen, Y.Q.: Design and analysis of collaborative unmanned surface-aerial vehicle cruise systems. J. Adv. Transport. 1–11 (2019)

  55. Peng, K., Liu, W., Sun, Q., Ma, X., Hu, M., Wang, D., Liu, J.: Wide-area vehicle-drone cooperative sensing: opportunities and approaches. IEEE Access 7, 1818–1828 (2018)

    Article  Google Scholar 

  56. Hu, M., Liu, W., Peng, K., Ma, X., Cheng, W., Liu, J., Li, B.: Joint routing and scheduling for vehicle-assisted multidrone surveillance. IEEE Internet Things J. 6(2), 1781–1790 (2018)

    Article  Google Scholar 

  57. Hu, M., Liu, W., Lu, J., Fu, R., Peng, K., Ma, X., Liu, J.: On the joint design of routing and scheduling for vehicle-assisted multi-UAV inspection. Futur. Gener. Comput. Syst. 94, 214–223 (2019)

    Article  Google Scholar 

  58. Michael, N., Fink, J., Kumar, V.: Controlling a team of ground robots via an aerial robot. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 965–970 (2007)

  59. Michael, N., Fink, J., Kumar, V.: Controlling ensembles of robots via a supervisory aerial robot. Adv. Robot. 22(12), 1361–1377 (2008)

    Article  Google Scholar 

  60. Chaimowicz, L., Kumar, V.: Aerial shepherds: Coordination among uavs and swarms of robots. Proc. Int. Symp. Distributed Autonomous Robotic Systems, Citeseer (Toulouse, France), pp. 243–252 (2004)

  61. Aranda, M., López-Nicolás, G., Sagüés, C., Mezouar, Y.: Formation control of mobile robots using multiple aerial cameras. IEEE Trans. Rob. 31(4), 1064–1071 (2015)

    Article  Google Scholar 

  62. Aranda, M., Mezouar, Y., López-Nicolás, G., Sagüés, C.: Scale-free vision-based aerial control of a ground formation with hybrid topology. IEEE Trans. Control Syst. Technol. 27(4), 1703–1711 (2018)

    Article  Google Scholar 

  63. Rabta, B., Wankmüller, C., Reiner, G.: A drone fleet model for last-mile distribution in disaster relief operations. Int. J. Disaster Risk Reduct. 28, 107–112 (2018)

    Article  Google Scholar 

  64. Huang, Y., Zhu, M., Zheng, Z., Feroskhan, M.: Fixed-time autonomous shipboard landing control of a helicopter with external disturbances. Aerosp. Sci. Technol. 84, 18–30 (2019)

    Article  Google Scholar 

  65. Zheng, Z., Jin, Z., Sun, L., Zhu, M.: Adaptive sliding mode relative motion control for autonomous carrier landing of fixed-wing unmanned aerial vehicles. IEEE Access. 5, 5556–5565 (2017)

    Article  Google Scholar 

  66. Lange, S., Sunderhauf, N., Protzel, P.: A vision based onboard approach for landing and position control of an autonomous multirotor UAV in GPS-denied environments. In: 2009 International Conference on Advanced Robotics. pp. 1–6 (2009)

  67. Yang, T., Ren, Q., Zhang, F., Xie, B., Ren, H., Li, J., Zhang, Y.: Hybrid camera array-based uav auto-landing on moving ugv in gps-denied environment. Remote Sens. 10(11), 1–31 (2018)

    Article  Google Scholar 

  68. Fu, M., Zhang, K., Yi, Y., Shi, C.: Autonomous landing of a quadrotor on an UGV. In: 2016 IEEE International Conference on Mechatronics and Automation. pp. 988–993 (2016)

  69. Ghommam, J., Saad, M.: Autonomous landing of a quadrotor on a moving platform. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1504–1519 (2017)

    Article  Google Scholar 

  70. Rodriguez-Ramos, A., Sampedro, C., Bavle, H., Moreno, I. G., Campoy, P.: A deep reinforcement learning technique for vision-based autonomous multirotor landing on a moving platform. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1010–1017 (2018)

  71. Daly, J.M., Ma, Y., Waslander, S.L.: Coordinated landing of a quadrotor on a skid-steered ground vehicle in the presence of time delays. Auton. Robot. 38(2), 179–191 (2015)

    Article  Google Scholar 

  72. Ponza, A.: Optimization of drone-assisted parcel delivery. Master’sthesis, University of Padua. pp. 1–80 (2016)

  73. Murray, C.C., Chu, A.G.: The flying sidekick traveling salesman problem: optimization of drone-assisted parcel delivery. Transp. Res. C Emerg. Technol. 54, 86–109 (2015)

    Article  Google Scholar 

  74. Ferrandez, S.M., Harbison, T., Weber, T., Sturges, R., Rich, R.: Optimization of a truck-drone in tandem delivery network using k-means and genetic algorithm. J. Ind. Eng. Manag. 9(2), 374–388 (2016)

    Google Scholar 

  75. Wang, X., Poikonen, S., Golden, B.: The vehicle routing problem with drones: several worst-case results. Optim. Lett. 11(4), 679–697 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  76. Sivaneri, V.O., Gross, J.N.: UGV-to-UAV cooperative ranging for robust navigation in GNSS-challenged environments. Aerosp. Sci. Technol. 71, 245–255 (2017)

    Article  Google Scholar 

  77. Sivaneri, V.O., Gross, J.N.: Flight-testing of a cooperative UGV-to-UAV strategy for improved positioning in challenging GNSS environments. Aerosp. Sci. Technol. 82, 575–582 (2018)

    Article  Google Scholar 

  78. Jung, S., Ariyur, K.B.: Compensating UAV GPS data accuracy through use of relative positioning and GPS data of UGV. J. Mech. Sci. Technol. 31(9), 4471–4480 (2017)

    Article  Google Scholar 

  79. Maini, P., Yu, K., Sujit, P. B., Tokekar, P.: Persistent monitoring with refueling on a terrain using a team of aerial and ground robots. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 8493–8498 (2018)

  80. Christie, G., Shoemaker, A., Kochersberger, K., Tokekar, P., McLean, L., Leonessa, A.: Radiation search operations using scene understanding with autonomous UAV and UGV. J. Field Robot. 34(8), 1450–1468 (2017)

    Article  Google Scholar 

  81. Shkurti, F., Xu, A., Meghjani, M., Higuera, J. C.G., Girdhar, Y., Giguere, P., Dey, B.B., Li, J., Kalmabach, A., Prahacs, C., Turgeon, K., Rekleitis, I., Dudek, G.: Multi-domain monitoring of marine environments using a heterogeneous robot team. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 1747–1753 (2012)

  82. Reineman, B.D., Lenain, L., Melville, W.K.: The use of ship-launched fixed-wing UAVs for measuring the marine atmospheric boundary layer and ocean surface processes. J. Atmos. Oceanic Tech. 33(9), 2029–2052 (2016)

    Article  Google Scholar 

  83. Roldán, J.J., Garcia-Aunon, P., Garzón, M., De, L.J., Del, C,J., Barrientos, A.: Heterogeneous multi-robot system for mapping environmental variables of greenhouses. Sensors. 16(7), 1018. pp. 1–24 (2016)

  84. Fankhauser, P., Bloesch, M., Krüsi, P., Diethelm, R., Wermelinger, M., Schneider, T., Dymczyk, M., Hutter, M., Siegwart, R.: Collaborative navigation for flying and walking robots. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 2859–2866. (2016)

  85. Forster, C., Pizzoli, M., Scaramuzza, D.: Air-ground localization and map augmentation using monocular dense reconstruction. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 3971–3978 (2013)

  86. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coordination. Int. J. Adv. Rob. Syst. 10(399), 1–18 (2013)

    Google Scholar 

  87. Korsah, G.A., Stentz, A., Dias, M.B.: A comprehensive taxonomy for multi-robot task allocation. Int. J. Robot. Res. 32(12), 1495–1512 (2013)

    Article  Google Scholar 

  88. Luo, Z., Liu, Z., Shi, J.: A two-echelon cooperated routing problem for a ground vehicle and its carried unmanned aerial vehicle. Sensors, 17(5), 1144. pp.1–17 (2017)

  89. Ulmer, M.W., Thomas, B.W.: Same-day delivery with heterogeneous fleets of drones and vehicles. Networks 72(4), 475–505 (2018)

    Article  MathSciNet  Google Scholar 

  90. Duan, R., Wang, J., Jiang, C., Yao, H., Ren, Y., Qian, Y.: Resource allocation for multi-UAV aided IoT NOMA uplink transmission systems. IEEE Internet Things J. 6(4), 7025–7037 (2019)

    Article  Google Scholar 

  91. Peng, K., Du, J., Lu, F., Sun, Q., Dong, Y., Zhou, P., Hu, M.: A hybrid genetic algorithm on routing and scheduling for vehicle-assisted multi-drone parcel delivery. IEEE Access. 7, 49191–49200 (2019)

    Article  Google Scholar 

  92. Parker, L.E.: Path planning and motion coordination in multiple mobile robot teams. Encyclopedia of complexity and system science, pp. 5783–5800 (2009)

  93. Xiao, W., Yu, J., Wang, R., Dong, X., Li, Q., Ren, Z.: Time-varying formation control for time-delayed multi-agent systems with general linear dynamics and switching topologies. Unmanned Syst. 7(01), 3–13 (2019)

    Article  Google Scholar 

  94. Mohiuddin, A., Tarek, T., Zweiri, Y., Gan, D.: A survey of single and multi-UAV aerial manipulation. Unmanned Syst. 8(02), 119–147 (2020)

    Article  Google Scholar 

  95. Zhang, Y., Wen, Y., Li, F., Chen, Y.: Distributed observer-based formation tracking control of multi-agent systems with multiple targets of unknown periodic inputs. Unmanned Syst. 7(01), 15–23 (2019)

    Article  Google Scholar 

  96. Schwager, M., Dames, P., Rus, D., Kumar, V.: A multi-robot control policy for information gathering in the presence of unknown hazards. In: Robotics Research. Springer, Cham. pp. 455-472 (2017)

  97. Forster, C., Lynen, S., Kneip, L., Scaramuzza, D.; Collaborative monocular slam with multiple micro aerial vehicles. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 3962–3970 (2013)

  98. Vidal-Calleja, T.A., Berger, C., Solà, J., Lacroix, S.: Large scale multiple robot visual mapping with heterogeneous landmarks in semi-structured terrain. Robot. Auton. Syst. 59(9), 654–674 (2011)

    Article  Google Scholar 

  99. Oleynikova, H., Burri, M., Lynen, S., Siegwart, R.: Real-time visual-inertial localization for aerial and ground robots. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 3079–3085 (2015)

  100. Piasco, N., Marzat, J., Sanfourche, M.: Collaborative localization and formation flying using distributed stereo-vision. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). pp. 1202–1207 (2016)

  101. Schmuck, P., Chli, M.: CC-SLAM: robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams. J. Field Robot. 36(4), 763–781 (2019)

    Article  Google Scholar 

  102. Choudhary, S., Carlone, L., Nieto, C., Rogers, J., Christensen, H.I., Dellaert, F.: Distributed mapping with privacy and communication constraints: lightweight algorithms and object-based models. Int. J. Robot. Res. 36(12), 1286–1311 (2017)

    Article  Google Scholar 

  103. Cieslewski, T., Choudhary, S., Scaramuzza, D.: Data-efficient decentralized visual SLAM. In: 2018 IEEE international conference on robotics and automation (ICRA). pp. 2466–2473 (2018)

  104. Zhang, H., Chen, X., Lu, H., Xiao, J.: Distributed and collaborative monocular simultaneous localization and mapping for multi-robot systems in large-scale environments. Int. J. Adv. Robot. Syst. 15(3), 1729881418780178. pp. 1–30 (2018)

  105. Luft, L., Schubert, T., Roumeliotis, S.I., Burgard, W.: Recursive decentralized localization for multi-robot systems with asynchronous pairwise communication. Int. J. Robot. Res. 37(10), 1152–1167 (2018)

    Article  Google Scholar 

  106. Klamt, T., Rodriguez, D., Baccelliere, L., Chen, X., Chiaradia, D., Cichon, T., et al.: Flexible disaster response of tomorrow: final presentation and evaluation of the CENTAURO system. IEEE Robot. Autom. Mag. 26(4), 59–72 (2019)

    Article  Google Scholar 

  107. Ollero, A., Lacroix, S., Merino, L., Gancet, J., Wiklund, J., Remuß, V., et al.: Multiple eyes in the skies: architecture and perception issues in the COMETS unmanned air vehicles project. IEEE Robot. Autom. Mag. 12(2), 46–57 (2005)

    Article  Google Scholar 

  108. Gancet, J., Hattenberger, G., Alami, R., Lacroix, S.: Task planning and control for a multi-UAV system: architecture and algorithms. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 1017–1022 (2005)

  109. Kruijff, G.J.M., Kruijff-Korbayová, I., Keshavdas, S., Larochelle, B., Janíček, M., Colas, F., et al.: Designing, developing, and deploying systems to support human–robot teams in disaster response. Adv. Robot. 28(23), 1547–1570 (2014)

    Article  Google Scholar 

  110. Surmann, H., Worst, R., Buschmann, T., Leinweber, A., Schmitz, A., Senkowski, G.,  Goddemeier, N.: Integration of uavs in urban search and rescue missions. In: 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). pp. 203–209 (2019)

  111. Cubber, G. D., Doroftei, D., Rudin, K., Berns, K., Serrano, D., Sanchez, J., Roda, R. Search and rescue robotics-from theory to practice. (2017)

  112. Matos, A., Martins, A., Dias, A., Ferreira, B., Almeida, J.M., Ferreira, H., Amaral, G., Figueiredo, A., Almeida, R., Silva, F.: Multiple robot operations for maritime search and rescue in euRathlon 2015 competition. pp. 1–7 (2016)

  113. De Greeff, J., Mioch, T., Van Vught, W., Hindriks, K., Neerincx, M. A., Kruijff-Korbayová, I.: Persistent robot-assisted disaster response. In: Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. pp. 99–100 (2018)

  114. Gawel, A., Del Don, C., Siegwart, R., Nieto, J., Cadena, C.: X-view: graph-based semantic multi-view localization. IEEE Robot. Autom. Lett. 3(3), 1687–1694 (2018)

    Article  Google Scholar 

  115. Freda, L., Gianni, M., Pirri, F., Gawel, A., Dubé, R., Siegwart, R., Cadena, C.: 3D multi-robot patrolling with a two-level coordination strategy. Auton. Robot. pp. 1747–1779 (2019)

  116. Fritsche, P., Kueppers, S., Briese, G., Wagner, B.: Radar and LiDAR Sensorfusion in Low Visibility Environments. In: Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics. pp. 30–36 (2016)

  117. Wei, G., Gardner, J. W., Cole, M., Xing, Y.: Multi-sensor module for a mobile robot operating in harsh environments. In: 2016 IEEE SENSORS. pp. 1–3 (2016)

  118. Cubber, G.D., Doroftei, D., Rudin, K., Berns, K., Matos, A., Serrano, D., Sanchez, J., Govindaraj, S., Bedkowski, J., Roda, R., Silva, E., Ourevitch, S.: Introduction to the Use of Robotic Tools for Search and Rescue[C]. Search and Rescue Robotics - From Theory to Practice. pp. 1–18 (2017)

  119. Li, D.: Research of Vision-based Air-Ground Robots Cooperation Methods. Shenyang Ligong University[D]. pp. 1–84 (2013)

  120. Wang A.Q.: Air-ground Cooperation for Environment Perception and Loop-closure Detection[D]. Dalian University of Technology (2016)

  121. Feng, G., Zheng, W., Qi, S., Sheng, F.C., Yu, Q.H., Jian, D.H.: Theoretical and experimental study of air-ground cooperative navigation. In: Proceedings of the 31st Chinese Control Conference. pp. 6333–6338 (2012)

  122. Li, J., Deng, G., Luo, C., Lin, Q., Yan, Q., Ming, Z.: A hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systems. IEEE Trans. Veh. Technol. 65(12), 9585–9596 (2016)

    Article  Google Scholar 

  123. Xi, A.X., Zhao, J., Zhou, T., et al.: Target searching and global path planning in UAV/UGV cooperative systems[J]. Appl. Electron. Technique. 45(1), 5–9 (2019)

    Google Scholar 

  124. Hu, Q., Zhao, J., Han, L.: Cooperative path planning for intelligent vehicle using unmanned air and ground vehicles. In: Chinese Intelligent Systems Conference. Springer, Singapore. pp. 603–611 (2017)

  125. Zhou, T., Zhao, J., Hu, Q.X.: Global path planning and tracking for mobile robot in cluttered environment[J]. Comput. Eng. 44(12), 208–214 (2018)

    Google Scholar 

  126. Wang, C.J., Luo, B., Li, C.Y., Wang, W., Yin, L., Zhao, Q.: The collaborative mapping and navigation based on visual SLAM in UAV platform. Acta Geodaet. Cartogr. Sin. 49(6), 767–776 (2020)

    Google Scholar 

  127. Liu, S., Chen, Y.B., Dao, F.J., Ke, Z.H., Chen, S.Y.: Multi-robot cooperative simultaneous localization and mapping in orthogonal angle of view. Control Theory Appl. 35(12), 1779–1787 (2018)

    MATH  Google Scholar 

  128. Winfield, A. F., Palau Franco, M., Brueggemann, B., Castro, A., Ferri, G., Ferreira, F., Liu, X.C., Petillot, Y., Roning, J., Schneider, F., Stengler, E., Sosa, D., Viguria, A.: euRathlon and ERL Emergency: A multi-domain multi-robot grand challenge for search and rescue robots. In: Iberian Robotics conference Springer, Cham. pp. 263-271. (2017)

  129. Xu, Y., Qi, W., Wan, Y., Wang, X.: Research on key technologies and demonstration of uav remote sensing network system based on big dipper navigation positioning system and gprs/3g. Science & Technology Information. pp. 185–186 (2016)

  130. Hsieh, M.A., Cowley, A., Keller, J.F., Chaimowicz, L., Grocholsky, B., Kumar, V., Taylor, C.J., Endo, Y., Arkin, R.C., Jung, B., Wolf, D.F., Sukhatme, G.S., MacKenzie, D.C.: Adaptive teams of autonomous aerial and ground robots for situational awareness. J. Field Robot. 24(11–12), 991–1014 (2007)

    Article  Google Scholar 

  131. Sampedro, C., Rodriguez-Ramos, A., Bavle, H., Carrio, A., de la Puente, P., Campoy, P.: A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques. J. Intell. Rob. Syst. 95(2), 601–627 (2019)

    Article  Google Scholar 

  132. Kruijff, G. J. M., Pirri, F., Gianni, M., Papadakis, P., Pizzoli, M., Sinha, A., Pianesi, E., Corrao, S., Priori, F., Febrini, S., Angeletti, S.: Rescue robots at earthquake-hit Mirandola, Italy: A field report. In: 2012 IEEE international symposium on safety, security, and rescue robotics (SSRR). pp. 1–8 (2012)

  133. Michael, N., Shen, S., Mohta, K., Kumar, V., Nagatani, K., Okada, Y., Kiribayashi, S., Otake, K., Yoshida, K., Ohno, K., Takeuchi, E., Tadokoro, S.: Collaborative mapping of an earthquake damaged building via ground and aerial robots. In: Field and Service Robotics. Springer, Berlin. pp. 33–47 (2014)

  134. Goodrich, M.A., Morse, B.S., Gerhardt, D., Cooper, J.L., Quigley, M., Adams, J.A., Humphrey, C.: Supporting wilderness search and rescue using a camera-equipped mini UAV. J. Field Robot. 25(1–2), 89–110 (2008)

    Article  Google Scholar 

  135. Garzón, M., Valente, J., Zapata, D., Barrientos, A.: An aerial-ground robotic system for navigation and obstacle mapping in large outdoor areas. Sensors 13(1), 1247–1267 (2013)

    Article  Google Scholar 

  136. Guérin, F., Guinand, F., Brethé, J. F., Pelvillain, H.: UAV-UGV cooperation for objects transportation in an industrial area. In: 2015 IEEE International Conference on Industrial Technology (ICIT). pp. 547–552 (2015)

  137. Grayson, S.: Search & Rescue Using Multi-Robot Systems. School of Computer Science and Informatics, University College Dublin. pp. 1–14 (2014)

  138. Grocholsky, B., Bayraktar, S., Kumar, V., Taylor, C. J., Pappas, G.: Synergies in feature localization by air-ground robot teams [M]. In: Experimental Robotics IX. Springer, Berlin. pp. 352–361 (2006)

  139. Fankhauser, P., Bloesch, M., Krüsi, P., Diethelm, R., Wermelinger, M., Schneider, T., Dymczyk, M., Hutter, M., Siegwant, R.: Collaborative navigation for flying and walking robots. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 2859–2866 (2016)

  140. Shen, C., Zhang, Y., Li, Z., Gao, F., Shen, S.: Collaborative air-ground target searching in complex environments. In: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR). pp. 230–237 (2017)

  141. Kanchanavally, S., Ordónez, R., Layne, J.: Mobile target tracking by networked uninhabited autonomous vehicles via hospitability maps. In: Proceedings of the 2004 American Control Conference. Vol. 6, pp. 5570–5575 (2005)

  142. Khan, A., Rinner, B., Cavallaro, A.: Cooperative robots to observe moving targets. IEEE Trans. Cybern. 48(1), 187–198 (2016)

    Article  Google Scholar 

  143. Tanner, H.G.: Switched uav-ugv cooperation scheme for target detection. In: Proceedings 2007 IEEE International Conference on Robotics and Automation. pp. 3457–3462 (2007)

  144. Chaimowicz, L., Grocholsky, B., Keller, J.F., Kumar, V., Taylor, C.J.: Experiments in multirobot air-ground coordination. IEEE Int. Conf. Robot. Autom. 4, 4053–4058 (2004)

    Google Scholar 

  145. Chaimowicz, L., Cowley, A., Gomez-Ibanez, D., Grocholsky, B., Hsieh, M. A., Hsu, H., Keller, J.F., Kumar, V., Swaminathan, R., Taylor, C.J. Deploying air-ground multi-robot teams in urban environments. In: Multi-robot systems. From swarms to intelligent automata. Springer, Dordrecht. pp. 223-234 (2005)

  146. Hood, S., Benson, K., Hamod, P., Madison, D., O'Kane, J. M., Rekleitis, I.: Bird's eye view: Cooperative exploration by UGV and UAV. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS). pp. 247–255 (2017)

  147. Papachristos, C., Tzes, A.: The power-tethered UAV-UGV team: A collaborative strategy for navigation in partially-mapped environments. In: 22nd Mediterranean Conference on Control and Automation. pp. 1153–1158 (2014)

  148. Kiribayashi, S., Ashizawa, J., Nagatani, K.: Modeling and design of tether powered multicopter. In: 2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–7 (2015)

  149. Wei, M., Isler, V.: Air to ground collaboration for energy-efficient path planning for ground robots. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1949–1954 (2019)

  150. Verma, J.K., Ranga, V.: Multi-robot coordination analysis, taxonomy, challenges and future scope. J. Intell. Rob. Syst. 102(1), 1–36 (2021)

    Article  Google Scholar 

  151. Shi, G., Karapetyan, N., Asghar, A. B., Reddinger, J. P., Dotterweich, J., Humann, J., Tokekar, P.: Risk-aware UAV-UGV Rendezvous with Chance-Constrained Markov Decision Process. arXiv preprint arXiv:2204.04767. pp. 1–8 (2022)

  152. Yang, Q., Yang, J.H.: HD video transmission of multi-rotor unmanned aerial vehicle based on 5G cellular communication network. Comput. Commun. 160, 688–696 (2020)

    Article  Google Scholar 

  153. Ramsankaran, R.A.A.J., Navinkumar, P.J., Dashora, A., Kulkarni, A.V.: UAV-based survey of glaciers in himalayas: challenges and recommendations. J. Indian Soc. Remote Sens. 49(5), 1171–1187 (2021)

    Article  Google Scholar 

  154. Asadi, K., Suresh, A.K., Ender, A., Gotad, S., Maniyar, S., Anand, S., Noghabaei, M., Han, K., Lobaton, E., Wu, T.: An integrated UGV-UAV system for construction site data collection. Autom. Constr. 112(103068), 1–23 (2020)

    Google Scholar 

  155. Yue, Y., Zhao, C., Wu, Z., Yang, C., Wang, Y., Wang, D.: Collaborative semantic understanding and mapping framework for autonomous systems. IEEE/ASME Trans. Mechatron. 26(2), 978–989 (2020)

    Article  Google Scholar 

  156. Martinez-Rozas, S., Rey, R., Alejo, D., Acedo, D., Cobano, J. A., Rodriguez-Ramos, A., Campoy, P., Merino, L., Caballero, F.: Skyeye team at MBZIRC 2020: A team of aerial and ground robots for GPS-denied autonomous fire extinguishing in an urban building scenario. arXiv preprint arXiv:2104.01834. pp. 1–35 (2021)

  157. Liang, X., Zhao, S., Chen, G., Meng, G., Wang, Y.: Design and development of ground station for UAV/UGV heterogeneous collaborative system. Ain Shams Eng. J. 12(4), 3879–3889 (2021)

    Article  Google Scholar 

  158. Wang, Y., Shan, M., Yue, Y., Wang, D.: Autonomous target docking of nonholonomic mobile robots using relative pose measurements. IEEE Trans. Industr. Electron. 68(8), 7233–7243 (2020)

    Article  Google Scholar 

  159. Yue, Y., Wen, M., Putra, Y., Wang, M., Wang, D.: Tightly-Coupled Perception and Navigation of Heterogeneous Land-Air Robots in Complex Scenarios. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). pp. 10052–10058 (2021)

  160. Martin, J.G., Frejo, J.R.D., García, R.A., Camacho, E.F.: Multi-robot task allocation problem with multiple nonlinear criteria using branch and bound and genetic algorithms. Intel. Serv. Robot. 14(5), 707–727 (2021)

    Article  Google Scholar 

  161. Liu, J., Wu, X., Fu, N., Pang, H., Ma, Z., Yang, J.: Communication control system of UAV based On 5G network. J. Phys.: Conf. Ser. 1650(2), 1–5 (2020)

    Google Scholar 

  162. Zhang, L., Zhao, J., Long, P., Wang, L., Qian, L., Lu, F., Song, X., Manocha, D.: An autonomous excavator system for material loading tasks. Sci. Robot. 6(55), eabc3164, pp. 1–12 (2021)

  163. Nguyen, H.T., Garratt, M., Bui, L.T., Abbass, H.: Apprenticeship bootstrapping: Inverse reinforcement learning in a multi-skill UAV-UGV coordination task. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems. pp. 2204–2206 (2018)

  164. Yu, Q., Shen, Z., Pang, Y., Liu, R.: Proficiency constrained multi-agent reinforcement learning for environment-adaptive multi UAV-UGV teaming. In: 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE). pp. 2114–2118 (2021)

  165. Zhang, J., Yu, Z., Mao, S., Periaswamy, S.C., Patton, J., Xia, X.: IADRL: Imitation augmented deep reinforcement learning enabled UGV-UAV coalition for tasking in complex environments. IEEE Access 8, 102335–102347 (2020)

    Article  Google Scholar 

Download references

Funding

This project is supported by National Nature Science Foundation of China (Grant No.51965008); Major Science and Technology Projects of Guizhou Province. ZNWLQC [2019]3012; Major Science and Technology Projects of Guizhou Province. [2022]045; Foundation of Postgraduate of Guizhou Province, Grant/Award Number: YJSKYJJ (2021) 025.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, C.L. and J.Z.; Methodology, C.L.; Validation, C.L. and N.S.; Investigation, C.L. and N.S.; Resources, C.L.; Data curation, C.L., N.S.; Writing—Original draft preparation, C.L.; Writing—Review and Editing, C.L. and J.Z.; Supervision, J.Z.; Project administration, J.Z.; Funding acquisition, J.Z. and C.L.

Corresponding author

Correspondence to Jin Zhao.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors have read and agreed to the published version of the manuscript.

Consent for Publication

All authors guarantee that the manuscript is an independent and original achievement, and the content is free from plagiarism and plagiarism. The relevant contents of the manuscript have not been published in various languages at home and abroad. No longer contribute to any other publication in any language after submitting to the magazine; This paper does not submit more than one draft. All authors agree with the above statement.

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 253834 KB)

Appendices

Appendix 1

Table 10 Some funded projects for multi-robot collaboration. The utilization of different robots; whether a heterogeneous multi-robot system was used; and how the data were processed. The application refers to the experimental testing scenarios, but not necessarily to the characterization of all systems

Appendix 2

Table 11 Some competitions for multi-robot collaboration. We describe: the utilization of different types of robots whether a heterogeneous multi-robot system is used; how the data is processed and the form of robot control. The application scenarios are restricted to the competition test scenarios

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhao, J. & Sun, N. A Review of Collaborative Air-Ground Robots Research. J Intell Robot Syst 106, 60 (2022). https://doi.org/10.1007/s10846-022-01756-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01756-4

Keywords

Navigation