Skip to main content
Log in

Motion Coordination of Multi-Agent Networks for Multiple Target Tracking with Guaranteed Collision Avoidance

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

We address a decentralized control problem for a multi-agent network whose goal is to track a moving multi-target system over a cluttered environment. Our problem is comprised of two interconnected problems. In the first problem, we aim to find a reference density path for the multi-target system that the multi-agent network must track as a whole. In our proposed solution approach, the probability density of the multi-target system is represented as a Gaussian mixture density which is estimated by an adaptive Gaussian sum filter. The second problem seeks for the individual inputs that will make the agents follow the moving targets while avoiding collisions. To address the latter problem, we propose a control algorithm which is based on a variation of Lloyd’s algorithm that utilizes the Gaussian mixture density computed as part of the solution to the first problem and a modified Voronoi tessellation which is composed of the so-called Obstacle-Aware Voronoi Cells. Because the two sub-problems are interconnected, an iterative approach is proposed which combines their solutions to solve the multi-target tracking problem in a comprehensive and safe way. Finally, we provide simulation results to showcase the effectiveness of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Available upon request

Code Availability

Available upon request

References

  1. Bakhshipour, M., Jabbari Ghadi, M., Namdari, F.: Swarm robotics search and rescue: a novel artificial intelligence-inspired optimization approach. Appl. Soft Comput. 57, 708–726 (2017)

    Article  Google Scholar 

  2. Hu, J., Xie, L., Xu, J., Xu, Z.: Multi-agent cooperative target search. Sensors 14(6), 9408–9428 (2014)

    Article  Google Scholar 

  3. Anderson, B.D.O., Sun, Z., Sugie, T., Azuma, S.-I., Sakurama, K.: Formation shape control with distance and area constraints. IFAC J. Syst. Control 1, 2–12 (2017)

    Article  Google Scholar 

  4. Tran, V.P., Garratt, M.A., Petersen, I.R.: Multi-vehicle formation control and obstacle avoidance using negative-imaginary systems theory. IFAC J. Syst. Control 15, 100117 (2021)

    Article  Google Scholar 

  5. Wu, Z., Guan, Z., Wu, X., Li, T.: Consensus based formation control and trajectory tracing of multi-agent robot systems. J. Intell. Robot. Syst. 48(3), 397–410 (2007)

    Article  Google Scholar 

  6. Dong, X., Xiang, J., Han, L., Li, Q., Ren, Z.: Distributed time-varying formation tracking analysis and design for second-order multi-agent systems. J. Intell. Robot. Syst. 86(2), 277–289 (2016)

    Article  Google Scholar 

  7. Pierson, A., Rus, D.: Distributed target tracking in cluttered environments with guaranteed collision avoidance. In: 2017 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), pp. 83–89 (2017)

  8. Ogren, P., Leonard, N.E.: A convergent dynamic window approach to obstacle avoidance. IEEE Trans. Robot. 21(2), 188–195 (2005)

    Article  Google Scholar 

  9. Zhang, H., Zhou, X., Wang, Z., Yan, H., Sun, J.: Adaptive consensus-based distributed target tracking with dynamic cluster in sensor networks. IEEE Trans. Cybern. 49(5), 1580–1591 (2019)

    Article  Google Scholar 

  10. Shinde, C., Das, K., Lima, R., Vankadari, M.B., Kumar, S.: Adaptive gaussian mixture-probability hypothesis density based multi sensor multi-target tracking. In: 2019 18th ECC, pp. 862–868 (2019)

  11. Gao, L., Zhang, H., Wang, Y.: An efficient multi-target tracking algorithm using gaussian mixture probability hypothesis density filter. In: 2018 IEEE CSAA, pp. 1–5 (2018)

  12. Yu, Y.: Consensus-based distributed mixture Kalman filter for maneuvering target tracking in wireless sensor networks. IEEE Trans. Veh. Technol. 65(10), 8669–8681 (2016)

    Article  Google Scholar 

  13. Granström, K., Orguner, U., Mahler, R., Lundquist, C.: Corrections on: “extended target tracking using a Gaussian-mixture PHD filter”. IEEE Trans. Aerosp. Electron. Syst. 53(2), 1055–1058 (2017)

    Article  Google Scholar 

  14. Sharma, P., Saucan, A., Bucci, D.J., Varshney, P.K.: Decentralized Gaussian filters for cooperative self-localization and multi-target tracking. IEEE Trans. Signal Process. 67(22), 5896–5911 (2019)

    Article  Google Scholar 

  15. Zhang, H., Zhou, X., Wang, Z., Yan, H.: Maneuvering target tracking with event-based mixture Kalman filter in mobile sensor networks. IEEE Trans. Cybern. 50(10), 4346–4357 (2020)

    Article  Google Scholar 

  16. Hu, J., Bhowmick, P., Lanzon, A.: Distributed adaptive time-varying group formation tracking for multiagent systems with multiple leaders on directed graphs. IEEE Trans. Control Netw. Syst. 7(1), 140–150 (2020)

    Article  MATH  Google Scholar 

  17. Baradaran Khalkhali, M., Vahedian, A., Sadoghi Yazdi, H.: Multi-target state estimation using interactive Kalman filter for multi-vehicle tracking. IEEE Trans. Intell. Transp. Syst. 21(3), 1131–1144 (2020)

    Article  Google Scholar 

  18. Yuan, W., Ganganath, N., Cheng, C. -T., Qing, G., Lau, F.C.M.: Semi-flocking-controlled mobile sensor networks for dynamic area coverage and multiple target tracking. IEEE Sensors J. 18(21), 8883–8892 (2018)

    Article  Google Scholar 

  19. Wu, Y., Liu, L.: Distributed average tracking for linear heterogeneous multi-agent systems with external disturbances. IEEE Trans. Netw. Sci. Eng. 1–1 (2021)

  20. Ma, J., Lu, H., Xiao, J., Zeng, Z., Zheng, Z.: Multi-robot target encirclement control with collision avoidance via deep reinforcement learning. J. Intell. Robot. Syst. 99(2), 371–386 (2019)

    Article  Google Scholar 

  21. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

    Article  Google Scholar 

  22. Lee, S.G., Diaz-Mercado, Y., Egerstedt, M.: Multirobot control using time-varying density functions. IEEE Trans. Robot. 31(2), 489–493 (2015)

    Article  Google Scholar 

  23. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks: variations on a theme. 10th MCCA 1 (2002)

  24. Miah, S., Fallah, M.M.H., Spinello, D.: Non-autonomous coverage control with diffusive evolving density. IEEE Trans. Autom. Control 62(10), 5262–5268 (2017)

    Article  MATH  Google Scholar 

  25. Miah, S., Panah, A.Y., Fallah, M.M.H., Spinello, D.: Generalized non-autonomous metric optimization for area coverage problems with mobile autonomous agents. Automatica 80, 295–299 (2017)

    Article  MATH  Google Scholar 

  26. Zuo, L., Shi, Y., Yan, W.: Dynamic coverage control in a time-varying environment using Bayesian prediction. IEEE Trans. Cybern. 49(1), 354–362 (2019)

    Article  Google Scholar 

  27. Chung, Y.-F., Kia, S.S.: A distributed service-matching coverage via heterogeneous agents. IEEE Robot. Autom. Lett. 7(2), 4400–4407 (2022)

    Article  Google Scholar 

  28. Inoue, D., Ito, Y., Yoshida, H.: Optimal transport-based coverage control for swarm robot systems: generalization of the Voronoi tessellation-based method. IEEE Control Syst. Lett. 5(4), 1483–1488 (2021)

    Article  Google Scholar 

  29. Li, Z., Tang, Y., Huang, T., Kurths, J.: Formation control with mismatched orientation in multi-agent systems. IEEE Trans. Netw. Sci. Eng. 6(3), 314–325 (2019)

    Article  Google Scholar 

  30. Bakolas, E.: Distributed partitioning algorithms for locational optimization of multiagent networks in se (2). IEEE Trans. Autom. Control 63(1), 101–116 (2017)

    Article  MATH  Google Scholar 

  31. Bakolas, E.: Workspace partitioning and topology discovery algorithms for heterogeneous multiagent networks. IEEE Trans. Control Netw. Syst. 8(1), 354–366 (2020)

    Article  MATH  Google Scholar 

  32. Jafari, M., Xu, H., Carrillo, L.R.G.: A biologically-inspired reinforcement learning based intelligent distributed flocking control for multi-agent systems in presence of uncertain system and dynamic environment. IFAC J. Syst. Control 13, 100096 (2020)

    Article  Google Scholar 

  33. Ma, A., Cortés, J.: Distributed multi-agent deployment for full visibility of 1.5d and 2.5d polyhedral terrains. J. Intell. Robot. Syst. 100(3-4), 1111–1127 (2020)

    Article  Google Scholar 

  34. Stergiopoulos, Y.J., Tzes, A.: Decentralized swarm coordination: a combined coverage/connectivity approach. J. Intell. Robot. Syst. 64(3-4), 603–623 (2011)

    Article  MATH  Google Scholar 

  35. Abdulghafoor, A.Z., Bakolas, E.: Two-level control of multiagent networks for dynamic coverage problems. IEEE Trans. Cybernet. PP 1–12 (2021)

  36. Abdulghafoor, A., Bakolas, E.: Distributed coverage control of multi-agent networks with guaranteed collision avoidance in cluttered environments. IFAC-PapersOnLine 54(20), 771–776 (2021). Modeling, Estimation and Control Conference MECC 2021

    Article  Google Scholar 

  37. Acevedo, J., Arrue, B., Maza, I., Ollero, A.: Cooperative large area surveillance with a team of aerial mobile robots for long endurance missions. J. Intell. Rob. Syst. 70(1-4), 329–345 (2013)

    Article  Google Scholar 

  38. Zhang, G., Fricke, G.K., Garg, D.P.: Spill detection and perimeter surveillance via distributed swarming agents. IEEE/ASME Trans. Mechatron. 18(1), 121–129 (2013)

    Article  Google Scholar 

  39. Asad, M., Khan, S., Arif, M., Mehmood, Z., Durrani, S., Khan, U.: Ballistic missile tracking in the presence of clutter using multi-target tracking algorithm. In: 2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 357–360. https://doi.org/10.1109/IBCAST.2017.7868079 (2017)

  40. Hwang, I., Balakrishnan, H., Roy, K., Tomlin, C.: Multiple-target tracking and identity management in clutter for air traffic control. In: Proceedings of the AACC American Control Conference (2004)

  41. Koga, T., Lu, X.: Autonomous decentralized surveillance system and continuous target tracking technology for air traffic control applications.. In: 2013 IEEE Eleventh International Symposium on Autonomous Decentralized Systems (ISADS), pp. 1–8. https://doi.org/10.1109/ISADS.2013.6513406 (2013)

  42. Benfold, B., Reid, I.: Stable multi-target tracking in real-time surveillance video. In: CVPR 2011, pp. 3457–3464. https://doi.org/10.1109/CVPR.2011.5995667 (2011)

  43. Granström, K., Lundquist, C., Orguner, U.: A gaussian mixture PHD filter for extended target tracking. In: 2010 13th International Conference on Information Fusion, pp. 1–8 (2010)

  44. Granstrom, K., Lundquist, C., Orguner, O.: Extended target tracking using a Gaussian-mixture PHD filter. IEEE Trans. Aerosp. Electron. Syst. 48(4), 3268–3286 (2012)

    Article  Google Scholar 

  45. Yazdian-Dehkordi, M., Azimifar, Z., Masnadi-Shirazi, M.A.: Penalized Gaussian mixture probability hypothesis density filter for multiple target tracking. Signal Process. 92(5), 1230–1242 (2012)

    Article  Google Scholar 

  46. Zhao, L., Ma, P., Su, X., Zhang, H.: A new multi-target state estimation algorithm for PHD particle filter. In: 2010 13th International Conference on Information Fusion, pp. 1–8 (2010)

  47. Vo, B. -N., Singh, S., Doucet, A., et al.: Sequential monte carlo implementation of the PHD filter for multi-target tracking. In: Proc. Int’L Conf. on Information Fusion, pp. 792–799 (2003)

  48. Leonard, M.R., Zoubir, A.M.: Multi-target tracking in distributed sensor networks using particle PHD filters. Signal Process. 159, 130–146 (2019)

    Article  Google Scholar 

  49. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  Google Scholar 

  50. Maskell, S., Gordon, N.: A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking. In: Target Tracking: Algorithms and Applications, IEE Workshop On, pp. 2–1. IET (2001)

  51. Daum, F., Huang, J.: Curse of dimensionality and particle filters. In: 2003 IEEE Aerospace Conference Proceedings, vol. 4, pp. 1979–1993 (2003)

  52. Çağlar, A, Aksoy, S, Arıkan, O.: Maximum likelihood estimation of Gaussian mixture models using stochastic search. Pattern Recogn. 45(7), 2804–2816 (2012)

    Article  MATH  Google Scholar 

  53. Xu, Y., Fang, Y., Peng, W., Wu, Y.: An efficient Gaussian sum filter based on prune-cluster-merge scheme. IEEE Access 7, 150992–151005 (2019)

    Article  Google Scholar 

  54. Alspach, D., Sorenson, H.: Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Autom. Control 17(4), 439–448 (1972)

    Article  MATH  Google Scholar 

  55. Ito, K., Xiong, K.: Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 45(5), 910–927 (2000)

    Article  MATH  Google Scholar 

  56. Pal, S., Coates, M.: Gaussian sum particle flow filter. In: 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 1–5 (2017)

  57. Kotecha, J.H., Djuric, P.M.: Gaussian sum particle filtering. IEEE Trans. Signal Process. 51 (10), 2602–2612 (2003)

    Article  MATH  Google Scholar 

  58. Raihan, D., Chakravorty, S.: Particle Gaussian mixture filters-i. Automatica 98, 331–340 (2018)

    Article  MATH  Google Scholar 

  59. Raihan, D., Chakravorty, S.: Particle Gaussian mixture filters-ii. Automatica 98, 341–349 (2018)

    Article  MATH  Google Scholar 

  60. Musicki, D., La Scala, B.F., Evans, R.J.: Integrated track splitting filter - efficient multi-scan single target tracking in clutter. IEEE Trans. Aerosp. Electron. Syst. 43(4), 1409–1425 (2007)

    Article  Google Scholar 

  61. Terejanu, G., Singla, P., Singh, T., Scott, P.D.: Adaptive Gaussian sum filter for nonlinear Bayesian estimation. IEEE Trans. Autom. Control 56(9), 2151–2156 (2011)

    Article  MATH  Google Scholar 

  62. Tabasso, C., Cichella, V., Mehdi, S.B., Marinho, T., Hovakimyan, N.: Time coordination and collision avoidance using leader-follower strategies in multi-vehicle missions. Robotics (Basel) 10(1), 34 (2021)

    Article  Google Scholar 

  63. Ji, J., Khajepour, A., Melek, W.W., Huang, Y.: Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Trans. Veh. Technol. 66(2), 952–964 (2017)

    Article  Google Scholar 

  64. Boardman, B., Harden, T., Martínez, S.: Multi-agent motion planning with sporadic communications for collision avoidance. IFAC J. Syst. Control 15, 100126 (2021)

    Article  Google Scholar 

  65. Sun, J., Tang, J., Lao, S.: Collision avoidance for cooperative uavs with optimized artificial potential field algorithm. IEEE Access 5, 18382–18390 (2017)

    Article  Google Scholar 

  66. Chen, Y.F., Liu, M., Everett, M., How, J.P.: Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. In: 2017 IEEE ICRA, pp. 285–292 (2017)

  67. Hu, Y., Yu, H., Zhong, Y., Lv, Y.: Distributed collision-avoidance formation control: a velocity obstacle-based approach. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1994–2000 (2019)

  68. Mylvaganam, T., Sassano, M.: Autonomous collision avoidance for wheeled mobile robots using a differential game approach. Eur. J. Control. 40, 53–61 (2018)

    Article  MATH  Google Scholar 

  69. Cappello, D., Garcin, S., Mao, Z., Sassano, M., Paranjape, A., Mylvaganam, T.: A hybrid controller for multi-agent collision avoidance via a differential game formulation. IEEE Trans. Control Syst. Technol. 29(4), 1750–1757 (2021)

    Article  Google Scholar 

  70. Minguez, J., Montano, L.: Nearness diagram (nd) navigation: collision avoidance in troublesome scenarios. IEEE Trans. Robot. Autom. 20(1), 45–59 (2004)

    Article  Google Scholar 

  71. Sutton, R., Singh, Y., Bibuli, M., Zereik, E., Sharma, S., Khan, A., Sutton, R.: A novel double layered hybrid multi-robot framework for guidance and navigation of unmanned surface vehicles in a practical maritime environment. J. Marine Sci. Eng. 8, 624 (2020)

    Article  Google Scholar 

  72. Sun, J., Tang, J., Lao, S.: Collision avoidance for cooperative uavs with optimized artificial potential field algorithm. IEEE Access 5, 18382–18390 (2017)

    Article  Google Scholar 

  73. Zhou, Z., Zhang, W., Ding, J., Huang, H., Stipanović, D.M., Tomlin, C.J.: Cooperative pursuit with Voronoi partitions. Automatica (Oxford) 72, 64–72 (2016)

    Article  MATH  Google Scholar 

  74. Pierson, A., Ataei, A., Paschalidis, I.C., Schwager, M.: Cooperative multi-quadrotor pursuit of an evader in an environment with no-fly zones. In: 2016 IEEE ICRA, pp. 320–326 (2016)

  75. Zhou, D., Wang, Z., Bandyopadhyay, S., Schwager, M.: Fast, on-line collision avoidance for dynamic vehicles using buffered Voronoi cells. IEEE Robot. Autom. Lett. 2(2), 1047–1054 (2017)

    Article  Google Scholar 

  76. Risken, H.: The Fokker-Planck Equation : Methods of Solution and Applications., 2nd ed. edn. Springer Series in Synergetics Ser. ; vol. 18. Springer (1992)

  77. Terejanu, G., Singla, P., Singh, T., Scott, P.D.: A novel gaussian sum filter method for accurate solution to the nonlinear filtering problem. In: 2008 11th International Conference on Information Fusion, pp. 1–8 (2008)

  78. Calafiore, G.C., El Ghaoui, L.: Optimization Models. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  79. Terejanu, G., Singla, P., Singh, T., Scott, P.D.: Uncertainty propagation for nonlinear dynamic systems using Gaussian mixture models. J. Guid. Control Dyn. 31(6), 1623–1633 (2008)

    Article  Google Scholar 

  80. Bakolas, E.: Decentralized spatial partitioning algorithms for multi-vehicle systems based on the minimum control effort metric. Syst. Control Lett. 73(C), 81–87 (2014)

    Article  MATH  Google Scholar 

  81. Bakolas, E.: Distributed partitioning algorithms for locational optimization of multiagent networks in se(2). IEEE Trans. Autom. Control 63(1), 101–116 (2018)

    Article  MATH  Google Scholar 

  82. Pierson, A., Schwarting, W., Karaman, S., Rus, D.: Weighted buffered voronoi cells for distributed semi-cooperative behavior. In: 2020 IEEE ICRA 2020, Paris, France, May 31 - August 31, 2020, pp. 5611–5617 (2020)

  83. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: Applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)

    Article  MATH  Google Scholar 

  84. Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM J. Numer. Anal. 44(1), 102–119 (2006)

    Article  MATH  Google Scholar 

  85. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations : Concepts and Applications of Voronoi Diagrams. Wiley, Hoboken (2000)

    Book  MATH  Google Scholar 

  86. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry : Algorithms and Applications, 3rd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  87. Bakolas, E.: Workspace partitioning and topology discovery algorithms for heterogeneous multiagent networks. IEEE Trans. Control Netw. Syst. 8(1), 354–366 (2021). https://doi.org/10.1109/TCNS.2020.3002984

    Article  MATH  Google Scholar 

  88. Kennedy, J., Chapman, A., Dower, P.M.: Generalized coverage control for time-varying density functions.. In: 2019 18th ECC, pp. 71–76 (2019)

  89. Sastry, S.: Nonlinear Systems : analysis, Stability, and Control. Interdisciplinary applied mathematics, vol. 10. Springer, New York (1999)

    Book  Google Scholar 

  90. Lee, S.-J., Park, S.-S., Choi, H.-L.: Potential game-based non-myopic sensor network planning for multi-target tracking. IEEE Access 6, 79245–79257 (2018)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Alaa Z. Abdulghafoor contributed to the following tasks: conceptualization, methodology, software, writing-original draft preparation, validation, visualization, investigation, and formal analysis. Efstathios Bakolas contributed to the following tasks: supervision, methodology, writing-reviewing and editing, and formal analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Efstathios Bakolas.

Ethics declarations

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethics approval

Not applicable. Our research does not involve any human or animal subjects.

Consent to participate

Not applicable. Our research does not involve any human subjects.

Consent for Publication

Not applicable.

Conflict of Interests

The authors have no relevant financial or non-financial interests to disclose

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulghafoor, A.Z., Bakolas, E. Motion Coordination of Multi-Agent Networks for Multiple Target Tracking with Guaranteed Collision Avoidance. J Intell Robot Syst 107, 5 (2023). https://doi.org/10.1007/s10846-022-01786-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01786-y

Keywords

Navigation