Skip to main content
Log in

Leader-Follower Power-based Formation Control Applied to Differential-drive Mobile Robots

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This work studies the power-based formation control for a set of differential-drive mobile robots, as an extension of the traditional distance-based formation control schemes. The possible measurements of the Received Signal Strength Indicator (RSSI) coupled with the non-omnidirectional radiation pattern shape of their antennas are used as a feedback signal. Due to the non-holonomic restriction in the kinematic model, a switched control scheme is designed with two control laws avoiding singularities and a smooth transition between the control inputs. The approach is the base for the coverage control needed for mobile sensor networks where the wireless nodes installed at the top of the robots must converge to desired power level values. Also, the RSSI measurement can be considered as an alternative to inter-robot distances avoiding the use of traditional sensors like LiDAR or onboard cameras. The approach is validated by an experimental setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ahmed, S., Hasan, M., Subhan, F.: Optimal filtering in multi-agent robots using leader-follower formation. In: 17th IEEE international multi topic conference 2014, pp. 440–444. https://doi.org/10.1109/INMIC.2014.7097380(2014)

  2. Li, H., Karray, F., Basir, O., Song, I.: A framework for coordinated control of multiagent systems and its applications. IEEE Trans. Syst. Man, Cybern. - Part A Syst. Humans 38(3), 534–548 (2008). https://doi.org/10.1109/TSMCA.2008.918591

    Article  Google Scholar 

  3. Guan, J., Zhou, W., Kang, S., Sun, Y., Liu, Z.: Robot formation control based on internet of things technology platform. IEEE Access 8, 96767–96776 (2020). https://doi.org/10.1109/ACCESS.2020.2992701

    Article  Google Scholar 

  4. Budianto, E., Hafidh, A., Al Afif, F., Wibowo, A., Jatmiko, W., Hardian, B., Mursanto, P., Muis, A.: Autonomous telecommunication networks coverage area expansion in disaster area using mobile robots. In: 2011 International symposium on micro-nanomechatronics and human science, pp. 361–366. https://doi.org/10.1109/MHS.2011.6102209 (2011)

  5. Boldrer, M., Palopoli, L., Fontanelli, D.: Socially-aware multi-agent velocity obstacle based navigation for nonholonomic vehicles. In: 2020 IEEE 44th annual computers, software, and applications conference (COMPSAC), pp. 18–25. https://doi.org/10.1109/COMPSAC48688.2020.00012 (2020)

  6. Guanghua, W., Deyi, L., Wenyan, G., Peng, J.: Study on formation control of multi-robot systems. In: 2013 Third international conference on intelligent system design and engineering applications, pp. 1335–1339. https://doi.org/10.1109/ISDEA.2012.316 (2013)

  7. Petrinić, T., Petrović, I.: A leader-follower approach to formation control of multiple non-holonomic mobile robots. In: 2013 36th International convention on information and communication technology, electronics and microelectronics (MIPRO), pp. 931–935 (2013)

  8. Lou, J., Xi, Z.: Cooperative output regulation of a class of linear multi-agent systems. In: Proceedings of the 32nd chinese control conference, pp. 6959–6963 (2013)

  9. Dong, Y., Huang, J.: Leader-following rendezvous with connectivity preservation of single-integrator multi-agent systems. IEEE/CAA J. Automatica Sinica 1(1), 19–23 (2014). https://doi.org/10.1109/JAS.2014.7004615

    Article  Google Scholar 

  10. Wang, Z., Deng, C.: Research on Finite Time Tracking Control of Multi Agent System. In: 2018 37th Chinese control conference (CCC), pp. 4988–4991. https://doi.org/10.23919/ChiCC.2018.8483800 (2018)

  11. Cao, K.-C., Liu, C.: Formation tracking control and formation stabilization control of multiple nonholonomic mobile robots. In: Proceedings of the 31st Chinese Control Conference, pp. 6053–6058 (2012)

  12. Soltani, N., Shahmansoorian, A., Khosravi, M.A.: Robust distance-angle leader-follower formation control of non-holonomic mobile robots. In: 2014 Second RSI/ISM international conference on robotics and Mechatronics (ICRoM), pp. 024–028. https://doi.org/10.1109/ICRoM.2014.6990771 (2014)

  13. Miao, Z., Liu, Y.-H., Wang, Y., Yi, G., Fierro, R.: Distributed estimation and control for leader-following formations of nonholonomic mobile robots. IEEE Trans. Autom. Sci. Eng. 15(4), 1946–1954 (2018). https://doi.org/10.1109/TASE.2018.2810253

    Article  Google Scholar 

  14. Chen, H., Wang, Y., Zhang, J., Xu, S., Sun, X., Wang, B., Fan, B.: Adaptive global stabilization of chained-form systems with multiple disturbance and strong nonlinear drifts. International Journal of Adaptive Control Signal Processing 1, 1–15 (2020). https://doi.org/10.1002/acs.3108

    MATH  Google Scholar 

  15. Baquero-Suárez, M., Mas, I., Giribet, J.I.: Robust tracking control for non-holonomic wheeled mobile robots in a leader-follower formation with time-gap separation. In: 2020 IEEE Congreso Bienal de Argentina (ARGENCON), pp. 1–9. https://doi.org/10.1109/ARGENCON49523.2020.9505375 (2020)

  16. Chen, H., Chen, Y., Wang, M.: Trajectory tracking for underactuated surface vessels with time delays and unknown control directions. IET Control Theory & Applications 16(6), 587–599 (2022). https://doi.org/10.1049/cth2.12250

    Article  Google Scholar 

  17. Tang, X., Ji, Y., Gao, F., Zhao, C.: Research on Multi-Robot Formation Controlling Method. In: Third international conference on Cyberspace technology (CCT 2015), pp. 1–3. https://doi.org/10.1049/cp.2015.0840 (2015)

  18. Morbidi, F., Bretagne, E.: A new characterization of mobility for distance-bearing formations of unicycle robots. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 4833–4839. https://doi.org/10.1109/IROS.2018.8593984 (2018)

  19. Wang, Y., Hussein, I.I.: Search and classification using multiple autonomous vehicles springer. https://doi.org/10.1007/978-1-4471-2957-8 (2012)

  20. Wang, D., Yu, Y., Wang, W.: Multi-robot formation and tracking control method. In: 2019 6Th International conference on control, decision and information technologies (CoDIT), pp. 176–181. https://doi.org/10.1109/CoDIT.2019.8820489 (2019)

  21. Zolotukhin, Y.N., Kotov, K.Y., Maltsev, A.S., Nesterov, A.A., Sobolev, M.A., Filippov, M.N.: A relative measurement based leader-follower formation control of mobile robots. In: 2015 12Th International conference on informatics in control, automation and robotics (ICINCO), vol. 02, pp. 310–313 (2015)

  22. Heintz, C., Hoagg, J.B.: Formation control for agents modeled with extended unicycle dynamics that includes orientation kinematics on SO(m) and speed constraints. Systems & Control Letters 146, 104784 (2020). https://doi.org/10.1016/j.sysconle.2020.104784

    Article  MATH  Google Scholar 

  23. Xiang, X., Lapierre, L., Jouvencel, B., Parodi, O.: Coordinated path following control of multiple Nonholonomic vehicles. In: OCEANS 2009-EUROPE, pp. 1–7. https://doi.org/10.1109/OCEANSE.2009.5278212 (2009)

  24. Halima, M., Abdelouahab, H., Yaakoub, T.M.: Leader-follower formation control using pi controller. In: 2018 International conference on electrical sciences and technologies in Maghreb (CISTEM), pp. 1–4. https://doi.org/10.1109/CISTEM.2018.8613569 (2018)

  25. Chiming, D., Lixia, L., Zhonghua, M., Jin, Z.: Distributed formation control for a group of multiple nonholonomic mobile robots. In: 2019 Chinese control conference (CCC), pp. 6183–6188. https://doi.org/10.23919/ChiCC.2019.8866619 (2019)

  26. Ayaz, M., Ammad-uddin, M., Baig, I., Aggoune, e.-H.M.: Wireless sensor’s civil applications, prototypes, and future integration possibilities: a review. IEEE Sensors J. 18(1), 4–30 (2018). https://doi.org/10.1109/JSEN.2017.2766364

    Article  Google Scholar 

  27. Saldaña, D., Ovalle, D., Montoya, A.: A multi-agent model to control robotic sensor networks. In: 2012 7Th Colombian computing congress (CCC), pp. 1–6. https://doi.org/10.1109/ColombianCC.2012.6398036 (2012)

  28. Im, H.-J., Lee, C.-E., Cho, Y.-J., Kim, S.: Rssi-based control of mobile cooperative robots for seamless networking. In: 2012 12Th International conference on control, automation and systems, pp. 980–982 (2012)

  29. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., Jamalipour, A.: Wireless body area networks: a survey. IEEE Communications Surveys Tutorials 16(3), 1658–1686 (2014). https://doi.org/10.1109/SURV.2013.121313.00064

    Article  Google Scholar 

  30. Wang, J., Obeng, M.S.: Distributed formation control for Nonholonomic mobile robots. In: 2012 IEEE 7Th sensor array and multichannel signal processing workshop (SAM), pp. 389–392. https://doi.org/10.1109/SAM.2012.6250519 (2012)

  31. Olate, J.M.P., Duran-Faundez, C.: On Maintaining Connectivity of a Colony of Autonomous Explorer Mobile Robots. In: 2014 Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol, pp. 199–204. https://doi.org/10.1109/SBR.LARS.Robocontrol.2014.50 (2014)

  32. Barbuto, M., Miri, M.-A., Alù, A., Bilotti, F., Toscano, A.: A new design tool for shaping the radiation pattern of patch antennas. In: 2019 IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting, pp. 1925–1926. https://doi.org/10.1109/APUSNCURSINRSM.2019.8889141 (2019)

  33. Graefenstein, J., Albert, A., Biber, P., Schilling, A.: Wireless node localization based on RSSI using a rotating antenna on a mobile robot. In: 2009 6Th Workshop on positioning, navigation and communication, pp. 253–259. https://doi.org/10.1109/WPNC.2009.4907835 (2009)

  34. Ismail, A.H., Kitagawa, H., Tasaki, R., Terashima, K.: Wifi Rss fingerprint database construction for mobile robot indoor positioning system. In: 2016 IEEE international conference on systems, man, and cybernetics (SMC), pp. 001561–001566. https://doi.org/10.1109/SMC.2016.7844461 (2016)

  35. Zhong, Y., Gao, S., He, Y.: Empirical study of communication connectivity quality for mobile robots. In: 2012 IEEE asia-pacific services computing conference, pp. 187–191. https://doi.org/10.1109/APSCC.2012.10 (2012)

  36. Boaventura, A.S., Carvalho, N.B.: A Proposal for dynamic power control in Rfid and passive sensor systems based on Rssi. In: 2012 6Th European Conference on Antennas and Propagation (EUCAP), pp. 3473–3475. https://doi.org/10.1109/EuCAP.2012.6206505 (2012)

  37. Hernandez-Martinez, E.G., González-Sierra, J., Alvarez-Guzman, E., Fernandez-Anaya, G., Ferreira-Vazquez, E.D., Flores-Godoy, J.-J.: Multi-robot formation based on RSSI power level and radiation pattern. Int. J. Syst. Sci. 0(0), 1–18 (2021). https://doi.org/10.1080/00207721.2021.1969467

    MATH  Google Scholar 

  38. Yoppy, Arjadi, R.H., Candra, H., Prananto, H.D., Wijanarko, T.A.W.: RSSI comparison of Esp8266 modules. In: 2018 Electrical power, electronics, communications, controls and informatics seminar (EECCIS), pp. 150–153. https://doi.org/10.1109/EECCIS.2018.8692892 (2018)

  39. Zhou, N., Zhao, X., Tan, M.: RSSI-based mobile robot navigation in grid-pattern wireless sensor network. In: 2013 Chinese automation congress, pp. 497–501. https://doi.org/10.1109/CAC.2013.6775785 (2013)

  40. Lijina, P., Nippun, K.A.: Bluetooth RSSI based collision avoidance in Multirobot environment. In: 2016 International conference on advances in computing, communications and informatics (ICACCI), pp. 2168–2174. https://doi.org/10.1109/ICACCI.2016.7732373 (2016)

  41. Amoolya, G., Lavanya, K.L.: A.P, D.S.: Wi-fi Rssi based optimal path planning and collision avoidance in a multi robot environment. In: 2019 IEEE international conference on intelligent techniques in control, optimization and signal processing (INCOS), pp. 1–5. .https://doi.org/10.1109/INCOS45849.2019.8951371 (2019)

  42. Awad, F., Omar, A., Naserllah, M., Abu-Hantash, A., Al-Taj, A.: Access point localization using autonomous mobile robot. In: 2017 IEEE jordan conference on applied electrical engineering and computing technologies (AEECT), pp. 1–5. https://doi.org/10.1109/AEECT.2017.8257754 (2017)

  43. Carvalho, F., Santos, E., Iabrudi, A., Chaimowicz, L., Campos, M.M.: Indoor Wireless Sensor Localization Using Mobile Robot and RSSI. In: 2012 IEEE 9Th international conference on mobile ad-hoc and sensor systems (MASS 2012), vol. Supplement, pp. 1–6. https://doi.org/10.1109/MASS.2012.6708522 (2012)

  44. Danklang, P., Pranekunakol, T.: An RSSI-based weighting with accelerometers for real-time indoor positioning. In: 2021 13Th International conference on knowledge and smart technology (KST), pp. 1–5. https://doi.org/10.1109/KST51265.2021.9415843 (2021)

  45. Graefenstein, J., Albert, A., Biber, P.: Radiation pattern correlation for mobile robot localization in low power wireless networks. In: 2009 IEEE international conference on robotics and automation, pp. 3545–3550 . https://doi.org/10.1109/ROBOT.2009.5152379 (2009)

  46. Di Castro, M., Lunghi, G., Masi, A., Ferre, M., Prades, R.M.: A multidimensional RSSI based framework for autonomous relay robots in harsh environments. In: 2019 Third IEEE international conference on robotic computing (IRC), pp. 183–188. https://doi.org/10.1109/IRC.2019.00035 (2019)

  47. De Carvalho, A.R., Ribas, A.D., Da Camara Neto, V.F., Nakamura, E.F., Figueiredo, C.M.: An RSSI-based navigation algorithm for a mobile robot in wireless sensor networks. In: 37Th Annual IEEE conference on local computer networks, pp. 308–311. https://doi.org/10.1109/LCN.2012.6423636 (2012)

  48. Paniagua-Contro, P., Hernandez-Martinez, E.G., González-Medina, O., González-Sierra, J., Flores-Godoy, J.J., Ferreira-Vazquez, E.D., Fernandez-Anaya, G.: Extension of leader-follower behaviours for wheeled mobile robots in multirobot coordination. Mathematical Problems in Engineering. https://doi.org/10.1155/2019/4957259(2019)

  49. Hernández-Martinez, E.G., González-Sierra, J., Alvarez-Guzman, E., Fernández-Anaya, G., Ferreira-Vazquez, E.D., Flores-Godoy, J.-J.: Leader-follower coverage based on power transmission and heading angles. In: 2020 IEEE 63Rd international midwest symposium on circuits and systems (MWSCAS), pp. 369–372. https://doi.org/10.1109/MWSCAS48704.2020.9184649 (2020)

  50. Redckeweg, M., Rohner, C.: Antenna Basics: White Paper. Technical Report 3.2015-8GE01_13. Rhode & Schwarz, München (2015)

    Google Scholar 

Download references

Funding

This work was supported by the Universidad Iberoamericana Ciudad de México through the research funds DINVP-025 and DINVP-051.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and experimental results were performed by Andrea Gabriela Sanchez-Sanchez. The first draft of the manuscript was written by Andrea Gabriela Sanchez-Sanchez, Eduardo Gamaliel Hernandez-Martinez and Jaime González-Sierra and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. González-Sierra.

Ethics declarations

Ethics approval

The research does not involve human participants, their data or biological material and it does not involve animals.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

E. G. Hernandez-Martinez, J. González-Sierra, M. Remírez-Neria J. J. Flores-Godoy, E. D. Ferreira-Vazquez and G. Fernandez-Anaya are contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Sanchez, A.G., Hernandez-Martinez, E.G., González-Sierra, J. et al. Leader-Follower Power-based Formation Control Applied to Differential-drive Mobile Robots. J Intell Robot Syst 107, 6 (2023). https://doi.org/10.1007/s10846-022-01796-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01796-w

Keywords

Navigation