Abstract
This paper proposes a novel stride management strategy for rehabilitation exoskeletons. This method incorporates a Central Pattern Generator (CPG) into an Assist-As-Needed (AAN) controller to induce an optimal stride length for the wearers and optimize the energy consumption. Most AAN controllers rely on a predefined and fixed trajectory to measure the required amount of assistance. However, for a stride management approach, the trajectory should be updated regularly according to the wearer’s performance to induce the optimal stride length eventually. The proposed stride management strategy deals with this challenge by integrating a CPG into the control loop. The CPG updates the desired trajectory right after each swing phase. The AAN controller uses a recently introduced Strength Index (SI) for continuous measurement of the wearer’s ability in tracking the desired trajectory. A virtual tunnel around the desired trajectory is defined, and the tunnel boundaries are adjusted according to the SI. Then, an adaptive impedance controller determines the assistive force according to the distance between the actual trajectory of the user and the tunnel boundaries. The performance of the proposed method is evaluated in OpenSim software, and reductions in the metabolic cost and muscles’ activity are observed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kalani, H., Moghimi, S., Akbarzadeh, A.: Towards an SEMG-based tele-operated robot for masticatory rehabilitation. Comput. Biol. Med. 75, 243–256 (2016)
Chen, Q., Zi, B., Sun, Z., Li, Y., Xu, Q.: Design and development of a new cable-driven parallel robot for waist rehabilitation. IEEE/ASME Trans. Mechatron. 24(4), 1497–1507 (2019)
Washabaugh, E.P., Guo, J., Chang, C.-K., Remy, C.D., Krishnan, C.: A portable passive rehabilitation robot for upper-extremity functional resistance training. IEEE Trans. Biomed. Eng. 66(2), 496–508 (2018)
Mazzoleni, S., Tran, V.-D., Dario, P., Posteraro, F.: Wrist robot-assisted rehabilitation treatment in subacute and chronic stroke patients: from distal-to-proximal motor recovery. IEEE Trans. Neural Syst. Rehabil. Eng. 26(9), 1889–1896 (2018)
Kardan, I., Akbarzadeh, A.: Robust output feedback assistive control of a compliantly actuated knee exoskeleton. Robot. Auton. Syst. 98, 15–29 (2017)
Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th international conference on rehabilitation robotics 2007, pp. 401–407. IEEE
Riener, R., Lunenburger, L., Jezernik, S., Anderschitz, M., Colombo, G., Dietz, V.: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 380–394 (2005)
Hussain, S., Jamwal, P.K., Ghayesh, M.H., Xie, S.Q.: Assist-as-needed control of an intrinsically compliant robotic gait training orthosis. IEEE Trans. Industr. Electron. 64(2), 1675–1685 (2016)
Lopes, J.M., Figueiredo, J., Pinheiro, C., Reis, L.P., Santos, C.P.: Biomechanical assessment of adapting trajectory and human-robot interaction stiffness in impedance-controlled ankle orthosis. J. Intell. Rob. Syst. 102(4), 76 (2021). https://doi.org/10.1007/s10846-021-01423-0
Asl, H.J., Narikiyo, T., Kawanishi, M.: An assist-as-needed control scheme for robot-assisted rehabilitation. In: 2017 American control conference (acc) 2017, pp. 198–203. IEEE
Asl, H.J., Yoon, J.: Stable assist-as-needed controller design for a planar cable-driven robotic system. Int. J. Control Autom. Syst. 15(6), 2871–2882 (2017). https://doi.org/10.1007/s12555-016-0492-x
Duschau-Wicke, A., Von Zitzewitz, J., Caprez, A., Lunenburger, L., Riener, R.: Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 18(1), 38–48 (2010)
Naghavi, N., Akbarzadeh, A., Tahamipour-Z, S.M., Kardan, I.: Assist-As-Needed control of a hip exoskeleton based on a novel strength index. Robot. Autonomous Syst. 134, 103667 (2020). https://doi.org/10.1016/j.robot.2020.103667
Ferdowsi University of Mashhad, Robotics Laboratory, HEXA Project. https://www.fumrobotics.ir/projects/fumhexa/.
Taherifar, A., Vossoughi, G., Ghafari, A.S.: Variable admittance control of the exoskeleton for gait rehabilitation based on a novel strength metric. Robotica 36(3), 427–447 (2018). https://doi.org/10.1017/S0263574717000480
Emken, J.L., Bobrow, J.E., Reinkensmeyer, D.J.: Robotic movement training as an optimization problem: designing a controller that assists only as needed. In: 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005. 2005, pp. 307–312. IEEE
Emken, J.L., Benitez, R., Reinkensmeyer, D.J.: Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. J. Neuroeng. Rehabil. 4(1), 8 (2007)
Carmichael, M.G., Liu, D.: Estimating physical assistance need using a musculoskeletal model. IEEE Trans. Biomed. Eng. 60(7), 1912–1919 (2013)
Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)
Tutsoy, Ö.: Cpg Based RL Algorithm Learns to Control of a humanoid robot leg. Int. J. Robotics Autom. 30 (2015).
Akkawutvanich, C., Knudsen, F.I., Riis, A.F., Larsen, J.C., Manoonpong, P.: Adaptive parallel reflex- and decoupled CPG-based control for complex bipedal locomotion. Robot. Autonomous Syst. 134, 103663 (2020). https://doi.org/10.1016/j.robot.2020.103663
Gui, K., Liu, H., Zhang, D.: Toward multimodal human-robot interaction to enhance active participation of users in gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 25(11), 2054–2066 (2017). https://doi.org/10.1109/TNSRE.2017.2703586
Zanotto, D., Stegall, P., Agrawal, S.K.: Adaptive assist-as-needed controller to improve gait symmetry in robot-assisted gait training. In: 2014 IEEE international conference on robotics and automation (ICRA) 2014, pp. 724–729. IEEE
Ahmed, A.I., Cheng, H., Liangwei, Z., Omer, M., Lin, X.: On-line walking speed control in human-powered exoskeleton systems based on dual reaction force sensors. J. Intell. Robot. Syst. 87(1), 59–80 (2017). https://doi.org/10.1007/s10846-017-0491-z
Santos, C.P., Alves, N., Moreno, J.C.: Biped locomotion control through a biomimetic cpg-based controller. J. Intell. Rob. Syst. 85(1), 47–70 (2017). https://doi.org/10.1007/s10846-016-0407-3
Song, G., Huang, R., Qiu, J., Cheng, H., Fan, S.: Model-based control with interaction predicting for human-coupled lower exoskeleton systems. J. Intell. Rob. Syst. 100(2), 389–400 (2020). https://doi.org/10.1007/s10846-020-01200-5
Han, Y., Zhu, S., Gao, H., Wu, Z., Xu, Y., Zhou, W.: The swing control of knee exoskeleton based on admittance model and nonlinear oscillator. J. Intell. Rob. Syst. 99(3), 747–756 (2020). https://doi.org/10.1007/s10846-019-01133-8
Khodaei-Mehr, J., Sharifi, M., Mushahwar, V.K., Tavakoli, M.: Intelligent Locomotion planning with enhanced postural stability for lower-limb exoskeletons. IEEE Robotics and Automation Letters, 1–1 (2021). https://doi.org/10.1109/LRA.2021.3098915
Mokhtari, M., Taghizadeh, M., Mazare, M.: Hybrid adaptive robust control based on CPG and ZMP for a lower limb exoskeleton. Robotica 39(2), 181–199 (2021). https://doi.org/10.1017/S0263574720000260
Tanaka, N., Matsushita, S., Sonoda, Y., Maruta, Y., Fujitaka, Y., Sato, M., Simomori, M., Onaka, R., Harada, K., Hirata, T.: Effect of stride management assist gait training for poststroke hemiplegia: a single center, open-label, randomized controlled trial. J. Stroke Cerebrovasc. Dis. 28(2), 477–486 (2019)
Lim, B., Lee, J., Jang, J., Kim, K., Park, Y.J., Seo, K., Shim, Y.: Delayed output feedback control for gait assistance with a robotic hip exoskeleton. IEEE Trans. Rob. 35(4), 1055–1062 (2019)
Kitatani, R., Ohata, K., Takahashi, H., Shibuta, S., Hashiguchi, Y., Yamakami, N.: Reduction in energy expenditure during walking using an automated stride assistance device in healthy young adults. Arch. Phys. Med. Rehabil. 95(11), 2128–2133 (2014). https://doi.org/10.1016/j.apmr.2014.07.008
Buesing, C., Fisch, G., O’Donnell, M., Shahidi, I., Thomas, L., Mummidisetty, C.K., Williams, K.J., Takahashi, H., Rymer, W.Z., Jayaraman, A.: Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. J. Neuroeng. Rehabil. 12(1), 69 (2015). https://doi.org/10.1186/s12984-015-0062-0
Jayaraman, A., O’brien, M.K., Madhavan, S., Mummidisetty, C.K., Roth, H.R., Hohl, K., Tapp, A., Brennan, K., Kocherginsky, M., Williams, K.J.: Stride management assist exoskeleton vs functional gait training in stroke: a randomized trial. Neurology 92(3), e263–e273 (2019)
Zarrugh, M.Y., Radcliffe, C.W.: Predicting metabolic cost of level walking. Eur. J. Appl. Physiol. 38(3), 215–223 (1978). https://doi.org/10.1007/BF00430080
Maalouf, N., Elhajj, I.H., Shammas, E., Asmar, D.: Biomimetic energy-based humanoid gait design. J. Intell. Rob. Syst. 100(1), 203–221 (2020). https://doi.org/10.1007/s10846-020-01179-z
Jamwal, P.K., Hussain, S., Tsoi, Y.H., Xie, S.Q.: Musculoskeletal model for path generation and modification of an ankle rehabilitation robot. IEEE Transactions on Human-Machine Systems (2020).
Ma, Y., Xie, S., Zhang, Y.: A patient-specific EMG-driven neuromuscular model for the potential use of human-inspired gait rehabilitation robots. Comput. Biol. Med. 70, 88–98 (2016)
Uchida, T.K., Seth, A., Pouya, S., Dembia, C.L., Hicks, J.L., Delp, S.L.: Simulating ideal assistive devices to reduce the metabolic cost of running. PLoS ONE 11(9), e0163417 (2016)
Dembia, C.L., Silder, A., Uchida, T.K., Hicks, J.L., Delp, S.L.: Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads. PLoS ONE 12(7), e0180320 (2017)
Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)
Seth, A., Hicks, J.L., Uchida, T.K., Habib, A., Dembia, C.L., Dunne, J.J., Ong, C.F., DeMers, M.S., Rajagopal, A., Millard, M., Hamner, S.R., Arnold, E.M., Yong, J.R., Lakshmikanth, S.K., Sherman, M.A., Ku, J.P., Delp, S.L.: OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput Biol 14(7), e1006223 (2018). https://doi.org/10.1371/journal.pcbi.1006223
OpenSim. https://simtk.org/projects/opensim.
Winter, D.A.: Biomechanics and motor control of human movement. John Wiley & Sons, (2009)
Schaal, S., Atkeson, C.G.: Constructive incremental learning from only local information. Neural Comput. 10(8), 2047–2084 (1998)
Bovi, G., Rabuffetti, M., Mazzoleni, P., Ferrarin, M.: A multiple-task gait analysis approach: kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait Posture 33(1), 6–13 (2011)
Nagarajan, U., Aguirre-Ollinger, G., Goswami, A.: Integral admittance shaping: A unified framework for active exoskeleton control. Robot. Auton. Syst. 75, 310–324 (2016). https://doi.org/10.1016/j.robot.2015.09.015
https://simtk-confluence.stanford.edu:8443/display/OpenSim/How+to+Use+the+CMC+Tool, accessed: 2022–12–02.
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1Umberger2010MuscleMetabolicsProbe.html #details, accessed: 2022–12–02.
Shimada, H., Kimura, Y., Suzuki, T., Hirata, T., Sugiura, M., Endo, Y., Yasuhara, K., Shimada, K., Kikuchi, K., Hashimoto, M., Ishikawa, M., Oda, K., Ishii, K., Ishiwata, K.: The use of positron emission tomography and [18F] Fluorodeoxyglucose for functional imaging of muscular activity during exercise with a stride assistance system. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 442–448 (2007). https://doi.org/10.1109/TNSRE.2007.903978
Shimada, H., Suzuki, T., Kimura, Y., Hirata, T., Sugiura, M., Endo, Y., Yasuhara, K., Shimada, K., Kikuchi, K., Oda, K., Ishii, K., Ishiwata, K.: Effects of an automated stride assistance system on walking parameters and muscular glucose metabolism in elderly adults. Br. J. Sports Med. 42(11), 922 (2008). https://doi.org/10.1136/bjsm.2007.039453
Shimada, H., Hirata, T., Kimura, Y., Naka, T., Kikuchi, K., Oda, K., Ishii, K., Ishiwata, K., Suzuki, T.: Effects of a robotic walking exercise on walking performance in community-dwelling elderly adults. Geriatr. Gerontol. Int. 9(4), 372–381 (2009). https://doi.org/10.1111/j.1447-0594.2009.00546.x
Zhang, J., Fiers, P., Witte, K.A., Jackson, R.W., Poggensee, K.L., Atkeson, C.G., Collins, S.H.: Human-in-the-loop optimization of exoskeleton assistance during walking. Science 356(6344), 1280 (2017). https://doi.org/10.1126/science.aal5054
Wei, D., Li, Z., Wei, Q., Su, H., Song, B., He, W., Li, J.: Human-in-the-loop control strategy of unilateral exoskeleton robots for gait rehabilitation. IEEE Transactions on Cognitive and Developmental Systems 13(1), 57–66 (2021). https://doi.org/10.1109/TCDS.2019.2954289
Song, S., Collins, S.H.: Optimizing exoskeleton assistance for faster self-selected walking. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 786–795 (2021). https://doi.org/10.1109/TNSRE.2021.3074154
IEEE Recommended Practice for Assessing the Impact of Autonomous and Intelligent Systems on Human Well-Being. IEEE Std 7010–2020, 1–96 (2020). https://doi.org/10.1109/IEEESTD.2020.9084219
Acknowledgements
We would like to first thank all members of the Ferdowsi University of Mashhad Robotics Lab for their kind participation and cooperation.
Funding
This research is supported by grant #101120 from the Ferdowsi University of Mashhad-Iran and grant #962297 from the National Institute for Medical Research Development of Iran. This research is also supported by the National Elites Foundation of Iran.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest Statement
The authors declare that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Naghavi, N., Akbarzadeh, A., Khaniki, O. et al. Assist-As-Needed Control of a Hip Exoskeleton, Using Central Pattern Generators in a Stride Management Strategy. J Intell Robot Syst 107, 53 (2023). https://doi.org/10.1007/s10846-023-01854-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10846-023-01854-x