Skip to main content
Log in

Swarm Intelligence Based Nonlinear Friction and Dynamic Parameters Identification for a 6-DOF Robotic Manipulator

  • Short paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The accurate dynamic model for industrial robots is required to enhance their efficiency in expanding their range of applications and carrying out complex tasks. In this research, considering the nonlinear friction model of each joint, an identification approach based on swarm intelligence algorithms for nonlinear joint dynamics of a 6-DOF UR5 robot manipulator has been proposed by using a two different excitation trajectory approach for analyzing the accuracy of parameters to be identified. The Coulomb-Viscous friction model, the Stribeck friction model and the centrosymmetric static friction model (CSFM) are chosen to describe the friction effects of the joints. By using five different arbitrary paths and a Fourier reference excitation trajectory, the nonlinear friction model and robot dynamic parameters are identified by using swarm intelligence-based optimization algorithms such as Cuckoo Search (CS), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and also the hybrid algorithms called GWO-CS and GWO-PSO. For the purpose of showing the prediction accuracy of the algorithms and comparing the prediction torques of the dynamic model based on the different joint friction models, the verification of parameter estimation is performed. Finally, simulation results are used to illustrate which swarm intelligence algorithms provide better estimation performance and which joint friction models achieve higher torque prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, J., Wang, J., You, Z.: An overview of dynamic parameter identification of robots. Robot. Comput.-Integrat. Manuf. 26(5), 414–419 (2010)

    Article  Google Scholar 

  2. Lee, T., Lee, B.D., Park, F.C.: Optimal excitation trajectories for mechanical systems identification. Automatica 131, 109773 (2021). https://doi.org/10.1016/j.automatica.2021.109773

    Article  MathSciNet  MATH  Google Scholar 

  3. Gautier, M., Khalil, W.: Direct calculation of minimum set of inertial parameters of serial robots. IEEE Trans. Robot. Autom. 6(3), 368–373 (1990)

    Article  Google Scholar 

  4. Mayeda, H., Yoshida, K., Osuka, K.: Base parameters of manipulator dynamic models. IEEE Trans. Robot. Autom. 6(3), 312–321 (1990)

    Article  Google Scholar 

  5. Jin, J., Gans, N.: Parameter identification for industrial robots with a fast and robust trajectory design approach. Robot. Comput.-Integrat. Manuf. 31, 21–29 (2015)

    Article  Google Scholar 

  6. Madsen, E., Rosenlund, O. S., Brandt, D., Zhang, X.: Comprehensive modeling and identification of nonlinear joint dynamics for collaborative industrial robot manipulators. Control Eng. Pract. 101 (2020)  https://doi.org/10.1016/j.conengprac.2020.104462

  7. Boby, R.A., Klimchik, A.: Combination of geometric and parametric approaches for kinematic identification of an industrial robot. Robot. Comput.-Integrat. Manufact. 71, 102142 (2021). https://doi.org/10.1016/j.rcim.2021.102142

    Article  Google Scholar 

  8. Idà, E., Briot, S., Carricato, M.: Identification of the inertial parameters of underactuated cable-driven parallel robots. Mech. Mach. Theory 167, 104504 (2022). https://doi.org/10.1016/j.mechmachtheory.2021.104504

    Article  Google Scholar 

  9. Briot, S., Gautier, M.: Global identification of joint drive gains and dynamic parameters of parallel robots. Multibody Syst. Dyn. 33, 3–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, S., Jiang, M., Cao, Y., Hua, D., Wu, H., Ding, Y., Chen, B.: A typical dynamic parameter identification method of 6-degree-of-freedom industrial robot. Proc. Inst. Mech. Eng. I: J. Syst. Control Eng. 231(9), 740–752 (2017)

    Google Scholar 

  11. Swevers, J., Verdonck, W., Naumer, B., Pieters, S., Biber, E.: An experimental robot load identification method for industrial application. Int. J. Robot. Res. 21(8), 701–712 (2002)

    Article  Google Scholar 

  12. Gautier, M., Janot, A., Vandanjon, P.: A new closed-loop output error method for parameter identification of robot dynamics. IEEE Trans. Control Syst. Technol. 21(2), 428–444 (2013)

    Article  Google Scholar 

  13. Gautier, G., Poignet, Ph.: Extended Kalman filtering and weighted least squares dynamic identification of robot. Control. Eng. Pract. 9(12), 1361–1372 (2001)

    Article  Google Scholar 

  14. Joukov, V., Bonnet, V., Venture, G., Kulić, D.: Constrained dynamic parameter estimation using the Extended Kalman Filter. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3654–3659 (2015)

  15. Jia, J., Zhang, M., Zang, X., Zhang, H., Zhao, J.: Dynamic parameter identification for a manipulator with joint torque sensors based on an improved experimental design. Sensors 19(10), 1–17 (2019)

    Article  Google Scholar 

  16. Bona, B., Curatella, A.: Identification of industrial robot parameters for advanced model-based controllers design. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 1681–1686 (2005)

  17. Olsen, M.M., Swevers, J., Verdonck, W.: Maximum likelihood identification of a dynamic robot model: Implementation issues. Int. J. Robot. Res. 21(2), 89–96 (2002)

    Article  Google Scholar 

  18. Urrea, C., Pascal, J.: Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot. Comput. Electr. Eng. 67, 719–806 (2018)

    Article  Google Scholar 

  19. Leboutet, Q., Roux, J., Janot, A., Guadarrama-Olvera, J.R., Cheng, G.: Inertial parameter identification in robotics: a survey. Appl. Sci. 11(9), 4303 (2021). https://doi.org/10.3390/app11094303

    Article  Google Scholar 

  20. Al-Dabbagh, R.D., Kinsheel, A., Mekhilef, S., Baba, M.S., Shamshirband, S.: System identification and control of robot manipulator based on fuzzy adaptive differential evolution algorithm. Adv. Eng. Softw. 78, 60–66 (2014)

    Article  Google Scholar 

  21. Bingül, Z., Karahan, O.: Dynamic identification of Staubli RX-60 robot using PSO and LS methods. Expert Syst. Appl. 38(4), 4136–4149 (2011)

    Article  Google Scholar 

  22. Yuan, J.J., Wan, W., Fu, X.J., Wang, S., Wang, N.: A novel LLSDPso method for nonlinear dynamic parameter identification. Assem. Autom. 37(4), 490–498 (2017)

    Article  Google Scholar 

  23. Wang, J.L., Li, Y., An, A.: Dynamic parameter identification of upper-limb rehabilitation robot system based on variable parameter particle swarm optimization. IET Cyber-Syst. Robot. 2, 140–148 (2020)

    Article  Google Scholar 

  24. Ding, L., Wu, H., Yao, Y., Yang, Y.: Dynamic model identification for 6-DOF industrial robots. J. Robot. 2015, 1–9 (2015)

    Article  Google Scholar 

  25. Zhang, L., Wang, J., Chen, J., Chen, K., Lin, B., Xu, F.: Dynamic modeling for a 6-DOF robot manipulator based on a centrosymmetric static friction model and whale genetic optimization algorithm. Adv. Eng. Softw. 135, 102684 (2019). https://doi.org/10.1016/j.advengsoft.2019.05.006

    Article  Google Scholar 

  26. Raviola, A., Guida, R., De Martin, A., Pastorelli, S., Mauro, S., Sorli, M.: Effects of temperature and mounting configuration on the dynamic parameters identification of industrial robots. Robotics 10(3), 83 (2021). https://doi.org/10.3390/robotics10030083

    Article  Google Scholar 

  27. Kovincic, N.I., Müller, A., Gattringer, H., Weyrer, M., Schlotzhauer, A., Brandstötter, M.: Dynamic parameter identification of the Universal Robots UR5. Proceedings of the Joint ARW & OAGM Workshop, pp. 44–53 (2019)

  28. Wang, S., Shao, X., Yang, L., Liu, N.: deep learning aided dynamic parameter identification of 6-DOF robot manipulators. IEEE Access 8, 138102–138116 (2020)

    Article  Google Scholar 

  29. Shao, X., Wang, S., Yang, L., Liu, N.: Research on Feedforward control based on robot dynamics parameters identification. IEEE International Conference on Mechatronics and Automation (ICMA), pp. 973–978 (2020)

  30. Raviola, A., De Martin, A., Guida, R., Pastorelli, S., Mauro, S., Sorli, M.: Identification of a UR5 collaborative robot dynamic parameters. In: Zeghloul, S., Laribi, M.A., Sandoval, J. (eds.) Advances in Service and Industrial Robotics. Mechanisms and Machine Science, vol. 102. Springer, Cham (2021)

    Google Scholar 

  31. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control, 1st edn. Wiley, Hoboken (2005)

    Google Scholar 

  32. Bittencourt, A.C., Wernholt, E., Sander-Tavallaey, S., Brogårdh, T.: An extended friction model to capture load and temperature effects in robot joints. Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 6161–6167 (2010)

  33. Fotuhi, M.J., Hazem, Z.B.,  Bingul, Z.: Adaptive joint friction estimation model for laboratory 2 DOF double dual twin rotor aerodynamical helicopter system. Proc. 6th Int. Conf. Control Eng. Inf. Technol. (CEIT), İstanbul, Turkey, pp. 25–27 (2018)

  34. Libin, Z., Jiacai, W., Jiaoliao, C., Kang, C., Bangyang, L., Fang, X.: Dynamic modeling for a 6-DOF robot manipulator based on a centrosymmetric static friction model and whale genetic optimization algorithm. Adv. Eng. Softw. 135 (2019) https://doi.org/10.1016/j.advengsoft.2019.05.006

  35. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, pp. 1942–1948 (1995). https://doi.org/10.1109/ICNN.1995.488968

  36. Yang, X.S., Deb, S.: Cuckoo search via Levy flights. 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214 (2009) https://doi.org/10.1109/NABIC.2009.5393690

  37. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Modell. Numer. Optimiz. 1(4), 330–343, 2010. arXiv:1005.2908

  38. Soneji, H., Sanghvi, R.C.: Towards the improvement of Cuckoo search algorithm. World Congress on Information and Communication Technologies (WICT), pp. 878–883 (2012)

  39. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  40. Shaheen, M.A., Hasanien, H.M., Alkuhayli, A.: A novel hybrid GWO-PSO optimization technique for optimal reactive power dispatch problem solution. Ain Shams Eng. J. 12, 621–630 (2021). https://doi.org/10.1016/j.asej.2020.07.011

    Article  Google Scholar 

  41. Nazari-Heris, M., Mohammadi-Ivatloo, B., Gharehpetian, G.: Short-term scheduling of hydro-based power plants considering application of heuristic algorithms: a comprehensive review. Renew Sustain. Energy Rev. 74, 116–129 (2017)

    Article  Google Scholar 

  42. Ting, T., Yang, X.-S., Cheng, S., Huang, K.: Hybrid metaheuristic algorithms: past, present, and future. Recent Advances in Swarm Intelligence and Evolutionary Computation, pp. 71–83. Springer (2015)

  43. Mlakar, U., Fister, I., Fister, I.: Hybrid self-adaptive cuckoo search for global optimization. Swarm Evol. Comput. 29, 47–72 (2016). https://doi.org/10.1016/j.swevo.2016.03.001

    Article  Google Scholar 

  44. Mahmoud, H.Y., Hasanien, H.M., Besheer, A.H., Abdelaziz, A.Y.: Hybrid cuckoo search algorithm and grey wolf optimizer based optimal control strategy for performance enhancement of HVDC based offshore wind farms. IET Gener. Transm. Distrib. 14(10), 1902–1911 (2019). https://doi.org/10.1049/iet-gtd.2019.0801

    Article  Google Scholar 

  45. Devarapalli, R., Bhattacharyya, B., Sinha, N.K.: An intelligent EGWO‐SCA‐CS algorithm for PSS parameter tuning under system uncertainties. Int. J. Intell. Syst.  35(10),  1520–1569. https://doi.org/10.1002/int.22263. Wiley

  46. Zhang, X., Lin, Q., Mao, W., Liu, S., Dou, Z., Liu, G.: Hybrid particle swarm and grey wolf optimizer and its application to clustering optimization. Appl. Soft Comput. 101, 107061 (2021). https://doi.org/10.1016/j.asoc.2020.107061

    Article  Google Scholar 

  47. Long, W., Jiao, J., Liang, X., Tang, M.: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng. Appl. Artif. Intell. 68, 63–80 (2018). https://doi.org/10.1016/j.engappai.2017.10.02

    Article  Google Scholar 

  48. Saxena, A., Kumar, R., Das, S.: β-chaotic map enabled grey wolf optimizer. Appl. Soft Comput. (2018). https://doi.org/10.1016/j.asoc.2018.10.044

    Article  Google Scholar 

  49. Gupta, S., Deep, K.: A novel random walk grey wolf optimizer. Swarm Evol. Comput. (2018). https://doi.org/10.1016/j.swevo.2018.01.001

    Article  Google Scholar 

  50. Wang, S., Shao, X., Yang, L., Liu, N.: Deep learning aided dynamic parameter identification of 6-DOF robot manipulators. IEEE 8, 138102–138116 (2020). https://doi.org/10.1109/ACCESS.2020.3012196

    Article  Google Scholar 

  51. Chen, D., Zhang, B., Wang, M.: Cartesian space trajectory planning on 7-DOF manipulator. IEEE Conference on Robotics and Biomimetics Zhuhai, China, December 6–9 (2015)

  52. Swevers, J., Ganseman, C., Tukel, D.B., de Schutter, J., Brussel, H.V.: Optimal robot excitation and identification. IEEE Trans. Robot. Autom. 13(5), 730–740 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguzhan Karahan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karahan, O., Karci, H. Swarm Intelligence Based Nonlinear Friction and Dynamic Parameters Identification for a 6-DOF Robotic Manipulator. J Intell Robot Syst 108, 19 (2023). https://doi.org/10.1007/s10846-023-01868-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01868-5

Keywords

Navigation