Skip to main content
Log in

Autonomous UAS-based Water Fluorescence Mapping and Targeted Sampling

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Uncrewed Aircraft Systems (UAS) are increasingly used in time-consuming and effort-heavy scientific exploration applications. One such application is the inspection of the physical, chemical, and biological properties of water in aquatic ecosystems. This paper presents a novel autonomous UAS capable of sensing water properties and collecting up to three 250 mL water samples from multiple sampling locations. The system features a customized UAS with an in-house built fluorescence sensor and pumping mechanism. The system does in situ fluorescence measurements to map the gradient of fluorescent content across the body of water and determine the best sampling spot for targeted sampling. To ensure safe near-water operation, multiple sensor fusion with an Extended Kalman Filter has been implemented for accurate altitude estimation within 1.5 m from the water surface. To validate the performance of the system, we present experimental results from deployment in two different water ecosystems, namely the Congaree River, SC and Lake Wateree, SC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code or data availability

Not applicable.

References

  1. Wilde, F.D., Radtke, D.B., Gibs, J., Iwatsubo, R.T.: National field manual for the collection of water-quality data: Field measurements. U.S. Department of the Interior, U.S. Geological Survey (1998)

  2. Sanim, K.R.I., Kalaitzakis, M., Kosaraju, B., Kitzhaber, Z., English, C., Vitzilaios, N., Myrick, M., Hodgson, M., Richardson, T.: Development of an aerial drone system for water analysis and sampling. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1601–1607. IEEE, Dubrovnik, Croatia (2022). https://doi.org/10.1109/icuas54217.2022.9836122

  3. English, C.M., Kitzhaber, Z.B., Sanim, K.R.I., Kalaitzakis, M., Kosaraju, B.S., Pinckney, J.L., Hodgson, M.E., Vitzilaios, N., Richardson, T., Myrick, M.: Chlorophyll Fluorometer for Intelligent Water Sampling Using a Small Uncrewed Aircraft System (sUAS). Applied Spectroscopy (2022). https://doi.org/10.1177/00037028221126748. (PMID: 36065908)

    Article  Google Scholar 

  4. Kitzhaber, Z.B., English, C.M., Sanim, K.R.I., Kalaitzakis, M., Kosaraju, B., Hodgson, M.E., Vitzilaios, N., Richardson, T.L., Myrick, M.L.: Fluorometer Control and Readout Using an Arduino Nano 33 BLE Sense Board. Applied Spectroscopy (2022). https://doi.org/10.1177/00037028221128800. (PMID: 36197285)

    Article  Google Scholar 

  5. Hodgson, M.E., Vitzilaios, N.I., Myrick, M.L., Richardson, T.L., Duggan, M., Sanim, K.R.I., Kalaitzakis, M., Kosaraju, B., English, C., Kitzhaber, Z.: Mission planning for low altitude aerial drones during water sampling. Drones 6(8) (2022). https://doi.org/10.3390/drones6080209

  6. Carroll, S., Kalaitzakis, M., Vitzilaios, N.: UAS Sensor Deployment and Retrieval to the Underside of Structures. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 895–900 (2021). https://doi.org/10.1109/ICUAS51884.2021.9476737

  7. Kalaitzakis, M., Cain, B., Vitzilaios, N., Rekleitis, I., Moulton, J.: A marsupial robotic system for surveying and inspection of freshwater ecosystems. Journal of Field Robotics 38(1), 121–138 (2021). https://doi.org/10.1002/rob.21957

    Article  Google Scholar 

  8. Suarez, A., Perez, M., Heredia, G., Ollero, A.: Cartesian aerial manipulator with compliant arm. Applied Sciences (Switzerland) 11, 1–20 (2021). https://doi.org/10.3390/app11031001

    Article  Google Scholar 

  9. Vélez-Nicolás, M., García-López, S., Barbero, L., Ruiz-Ortiz, V., Sánchez-Bellón, Á.: Applications of unmanned aerial systems (UASs) in hydrology: A review. Remote Sensing 13(7) (2021). https://doi.org/10.3390/rs13071359

  10. Filipovic, V., Nedic, N., Stojanovic, V.: Robust identification of pneumatic servo actuators in the real situations. Forschung im Ingenieurwesen 75, 183–196 (2011). https://doi.org/10.1007/s10010-011-0144-5

    Article  Google Scholar 

  11. Stojanovic, V., Nedic, N.: Joint state and parameter robust estimation of stochastic nonlinear systems. International Journal of Robust and Nonlinear Control 26(14), 3058–3074 (2016). https://doi.org/10.1002/rnc.3490

    Article  MathSciNet  MATH  Google Scholar 

  12. Djordjevic, V., Stojanovic, V., Tao, H., Song, X., He, S., Gao, W.: Data-driven control of hydraulic servo actuator based on adaptive dynamic programming. Discrete and Continuous Dynamical Systems - S 15(7), 1633–1650 (2022). https://doi.org/10.3934/dcdss.2021145

    Article  MathSciNet  MATH  Google Scholar 

  13. Schwarzbach, M., Kondak, K., Laiacker, M., Shih, C.Y., Marron, P.J.: Helicopter UAV systems for in situ measurements and sensor placement. In: 2012 IEEE International Geoscience and Remote Sensing Symposium, pp. 4766–4769. IEEE (2012). https://doi.org/10.1109/IGARSS.2012.6352548

  14. Schwarzbach, M., Laiacker, M., Mulero-Pazmany, M., Kondak, K.: Remote water sampling using flying robots. In: 2014 International Conference on Unmanned Aircraft Systems, ICUAS 2014 - Conference Proceedings, pp. 72–76. IEEE (2014). https://doi.org/10.1109/ICUAS.2014.6842240

  15. Ore, J.P., Elbaum, S., Burgin, A., Detweiler, C.: Autonomous aerial water sampling. Journal of Field Robotics 32(8), 1095–1113 (2015). https://doi.org/10.1002/rob.21591

    Article  Google Scholar 

  16. Ore, J.P., Detweiler, C.: Sensing water properties at precise depths from the air. Journal of Field Robotics 35(8), 1205–1221 (2018). https://doi.org/10.1002/rob.21807

    Article  Google Scholar 

  17. Song, K., Brewer, A., Ahmadian, S., Shankar, A., Detweiler, C., Burgin, A.J.: Using unmanned aerial vehicles to sample aquatic ecosystems. Limnology and Oceanography: Methods 15(12), 1021–1030 (2017). https://doi.org/10.1002/lom3.10222

    Article  Google Scholar 

  18. Cornell, D., Herman, M., Ontiveros, F.: Use of a UAV for Water Sampling to Assist Remote Sensing of Bacterial Flora in Freshwater Environments. Undergraduate External Publications (2016)

  19. Doi, H., Akamatsu, Y., Watanabe, Y., Goto, M., Inui, R., Katano, I., Nagano, M., Takahara, T., Minamoto, T.: Water sampling for environmental DNA surveys by using an unmanned aerial vehicle. Limnology and Oceanography: Methods 15(11), 939–944 (2017). https://doi.org/10.1002/lom3.10214

    Article  Google Scholar 

  20. Koparan, C., Koc, A.B., Privette, C.V., Sawyer, C.B.: Autonomous in situ measurements of noncontaminant water quality indicators and sample collection with a UAV. Water (Switzerland) 11(3) (2019). https://doi.org/10.3390/w11030604

  21. Koparan, C., Bulent Koc, A., Privette, C.V., Sawyer, C.B.: Adaptive water sampling device for aerial robots. Drones 4(1), 1–16 (2020). https://doi.org/10.3390/drones4010005

    Article  Google Scholar 

  22. Terada, A., Morita, Y., Hashimoto, T., Mori, T., Ohba, T., Yaguchi, M., Kanda, W.: Water sampling using a drone at Yugama crater lake, Kusatsu-Shirane volcano, Japan. Earth, Planets and Space 70(1), 64 (2018). https://doi.org/10.1186/s40623-018-0835-3

    Article  Google Scholar 

  23. Esakki, B., Ganesan, S., Mathiyazhagan, S., Ramasubramanian, K., Gnanasekaran, B., Son, B., Park, S.W., Choi, J.S.: Design of amphibious vehicle for unmanned mission in water quality monitoring using internet of things. Sensors (Switzerland) 18(10) (2018). https://doi.org/10.3390/s18103318

  24. Washburn, L., Romero, E., Salazar, D., Valdez-Shulz, A., Welch, Z., Iglesias-Rodriguez, D.: Water sampling from aerial drones for water quality research in coastal and inland waters. 2018 Ocean Sciences Meeting (2018)

  25. Castendyk, D., Straight, B., Voorhis, J., Somogyi, M., Jepson, W., Kucera, B.: Using aerial drones to select sample depths in pit lakes. In: Proceedings of the 13th International Conference on Mine Closure, pp. 1113–1126. Australian Centre for Geomechanics, Perth (2019). https://doi.org/10.36487/acg_rep/1915_89_castendyk

  26. Castendyk, D., Voorhis, J., Kucera, B.: A Validated Method for Pit Lake Water Sampling Using Aerial Drones and Sampling Devices. Mine Water and the Environment 39(3), 440–454 (2020). https://doi.org/10.1007/s10230-020-00673-y

    Article  Google Scholar 

  27. Banerjee, B.P., Raval, S., Maslin, T.J., Timms, W.: Development of a UAV-mounted system for remotely collecting mine water samples. International Journal of Mining, Reclamation and Environment 34(6), 385–396 (2020). https://doi.org/10.1080/17480930.2018.1549526

    Article  Google Scholar 

  28. Singh, D., Singh, R., Ajmeria, R., Gupta, M., Ponnalagu, R.N.: Dawssm: A plug-and-play drone assisted water sampling and sensing module. In: IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, pp. 1–6 (2021). https://doi.org/10.1109/IECON48115.2021.9589543

  29. Benson, J., Hanlon, R., Seifried, T.M., Baloh, P., Powers, C.W., Grothe, H., Schmale, D.G.: Microorganisms collected from the surface of freshwater lakes using a drone water sampling system (dowse). Water 11(1) (2019). https://doi.org/10.3390/w11010157

  30. D. Neto, J.C., Resque, I.S., Avelino, R.A., Santos, V.B.d., Leite, L.S., Cesar, L.O., Belo, P.H.d.S., Albuquerque, J., Lima Filho, J.L.d.: An adapted unmanned aerial vehicle for environmental water sampling. Química Nova 45(Quím. Nova, 2022 45(6)) (2022). https://doi.org/10.21577/0100-4042.20170892

  31. Horricks, R.A., Bannister, C., Lewis-McCrea, L.M., Hicks, J., Watson, K., Reid, G.K.: Comparison of drone and vessel-based collection of microbiological water samples in marine environments. Environmental Monitoring and Assessment 194, 439 (2022). https://doi.org/10.1007/s10661-022-10095-8

    Article  Google Scholar 

  32. Farinha, A.T., di Tria, J., Reyes, M., Rosas, C., Pang, O., Zufferey, R., Pomati, F., Kovac, M.: Off-shore and underwater sampling of aquatic environments with the aerial-aquatic drone medusa. Frontiers in Environmental Science 10 (2022). https://doi.org/10.3389/fenvs.2022.1023269

  33. How drone water sampling enables safer, inexpensive testing that exceeds federal EPA guidelines (2021). https://enterprise-insights.dji.com/blog/drone-water-sampling-nixie

  34. Nero water sampler - aerial drone sampling at its best. https://nerosampler.com/

  35. Drone based remote water sampling |UgCS integrated systems. https://integrated.ugcs.com/drone-based-remote-water-sampling

  36. Drone water sampling and monitoring. https://store.swellpro.com/pages/water-sampling-drone

  37. Graham, C., O’Connor, I., Broderick, L., Broderick, M., Jensen, O., Lally, H.: Drones can reliably, accurately and with high levels of precision, collect large volume water samples and physio-chemical data from lakes. Science of The Total Environment 824, 153875 (2022). https://doi.org/10.1016/j.scitotenv.2022.153875

    Article  Google Scholar 

  38. Koparan, C., Koc, A.B., Privette, C.V., Sawyer, C.B.: In situ water quality measurements using an unmanned aerial vehicle (UAV) system. Water (Switzerland) 10(3), 264 (2018). https://doi.org/10.3390/w10030264

    Article  Google Scholar 

  39. Chung, M., Detweiler, C., Hamilton, M., Higgins, J., Ore, J.P., Thompson, S.: Obtaining the Thermal Structure of Lakes from the Air. Water 7(11), 6467–6482 (2015). https://doi.org/10.3390/w7116467

    Article  Google Scholar 

  40. Demario, A., Lopez, P., Plewka, E., Wix, R., Xia, H., Zamora, E., Gessler, D., Yalin, A.P.: Water plume temperature measurements by an unmanned aerial system (UAS). Sensors (Switzerland) 17(2) (2017). https://doi.org/10.3390/s17020306

  41. Castendyk, D., Straight, B., Flllatreault, P., Thlbeault, S., Cameron, L.: Aerial drones used to sample pit lake water reduce costs and improve safety. Mining Engineering 69(7), 20–28 (2017)

    Google Scholar 

  42. Pinton, D., Canestrelli, A., Fantuzzi, L.: A UAV-based dye-tracking technique to measure surface velocities over tidal channels and salt marshes. Journal of Marine Science and Engineering 8(5) (2020). https://doi.org/10.3390/JMSE8050364

  43. FAA William J. Hughes Technical Center: Global Positioning System Standard Positioning Service Performance Analysis Report. Tech. Rep. January (2022). URL http://www.gps.gov/technical/ps/2008-SPS-performance-standard.pdf

  44. Hoy, B.J., Martin, P., Swaminathan, P., Srivastava, M.: From pressure to path: Barometer-based vehicle tracking. BuildSys 2015 - Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built pp. 65–74 (2015). https://doi.org/10.1145/2821650.2821665

  45. NAL Research: Datum Transformations of GPS Positions: Application Note. U-blox ag p. 12 (1999)

Download references

Acknowledgements

The authors would like to thank Mr. Dick Foote, homeowner and member of the Lake Wateree Association, for permitting us to use his private dock to deploy our system.

Funding

This work was partially supported by an ASPIRE grant from the Office of the Vice President for Research at the University of South Carolina.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: conceptualization: N. Vitzilaios, M.L. Myrick, M.E. Hodgson, and T.L. Richardson; system design and development: K. Sanim, C. English, Z. Kitzhaber and M. Kalaitzakis; field deployment and data collection: K. Sanim, C. English, Z. Kitzhaber, M. Kalaitzakis, N. Vitzilaios, M.L. Myrick, and M.E. Hodgson; analysis and interpretation of results: all authors; draft manuscript preparation: K. Sanim, M. Kalaitzakis, N. Vitzilaios; manuscript revision: all authors; project administration: N. Vitzilaios and M.L. Myrick; funding acquisition: N. Vitzilaios, M.L. Myrick, M.E. Hodgson and T.L. Richardson. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Nikolaos Vitzilaios.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanim, K.R.I., English, C., Kitzhaber, Z.B. et al. Autonomous UAS-based Water Fluorescence Mapping and Targeted Sampling. J Intell Robot Syst 108, 25 (2023). https://doi.org/10.1007/s10846-023-01880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01880-9

Keywords

Navigation