Skip to main content
Log in

Self-Pumping Actuation Module and its Application in Untethered Soft Robots

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Pneumatically driven soft actuators have been widely used in soft material robotics. However, soft pneumatic actuators are usually tethered to a rigid pump or compressor, which is complicated, cumbersome and noisy. In this study, we present a novel self-pumping actuation module which is composed of a soft origami pump, two soft pneumatic actuators, a servo motor, a controller and battery. During a working cycle, the soft pump is compressed or restored by pulling or releasing the tendons using the servo motor. As a consequence, the pneumatic actuators connected to the pump generate bending and restoring deformations. Moreover, the air flow inside the proposed module is closed-loop without exchanging air with the environment, making it possible to operation in certain scenarios such as in underwater or vacuum conditions, the advantage of our designed self-pumping actuation module is to recycle air without relying on a large rigid air pump. Theoretical model of the self-pumping actuation module is derived and its performance is characterized via several experiments. The maximum bending speed by the soft actuator is 239.2° s−1, the maximum compression speed of origami pump is 38.2 mm s−1, the maximum pressure inside the pump is 48 kPa, the maximum internal flow rate of pump is 11.5 L min−1, and the maximum torque of actuator is 0.0455 N·m. A soft robotic gripper, a fully untethered quadrupedal soft swimming robot and a rehabilitation glove are fabricated to show the superiority of the proposed design over traditional pneumatically actuated soft robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Whitesides, G.M.: Soft Robotics. Soft robotics. Angew. Chem. Int. Edit. 57(16), 4258–4273 (2018)

    Article  Google Scholar 

  2. Laschi, C., Mazzolai, B., Cianchetti, M.: Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1(1), eaah3690 (2016)

    Article  Google Scholar 

  3. Majidi, C.: Soft-matter engineering for soft robotics. Adv. Mater. Technol. 4(2), 1800477 (2019)

    Google Scholar 

  4. Hawkes, E.W., Majidi, C., Tolley, M.T.: Hard questions for soft robotics. Sci. Robot. 6(53), eabg6049 (2021)

    Article  Google Scholar 

  5. Gorissen, B., Reynaerts, D., Konishi, S., Yoshida, K., Kim, J.W., De Volder, M.: Elastic inflatable actuators for soft robotic applications. Adv. Mater. 29(43), 1604977 (2017)

    Article  Google Scholar 

  6. Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015)

    Article  Google Scholar 

  7. Bell, M.A., Becker, K.P., Wood, R.J.: Injection molding of soft robots. Adv. Mater. Technol. 7(1), 2100605 (2022)

    Article  Google Scholar 

  8. Bell, M.A., Gorissen, B., Bertoldi, K., Weaver, J.C., Wood, R.J.: A modular and self-contained fluidic engine for soft actuators. Adv. Intell. Syst. 4(1), 2100094 (2022)

    Article  Google Scholar 

  9. Wang, W., Ahn, S.-H.: Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping. Soft Robot. 4(4), 379–389 (2017)

    Article  Google Scholar 

  10. Hwang, J., Wang, W.D.: Shape memory alloy-based soft amphibious robot capable of seal-inspired locomotion. Adv. Mater. Technol. 7(6), 2101153 (2022)

    Article  Google Scholar 

  11. Yang, Y., Chen, Y., Wei, Y., Li, Y.: 3D printing of shape memory polymer for functional part fabrication. Int. J. Adv. Manuf. Technol. 84(9), 2079–2095 (2016)

    Article  Google Scholar 

  12. Chen, F., Liu, K., Wang, Y., Zou, J., Gu, G., Zhu, X.: Automatic design of soft dielectric elastomer actuators with optimal spatial electric fields. IEEE Trans. Robot. 35(5), 1150–1165 (2019)

    Article  Google Scholar 

  13. Gu, G.-Y., Zhu, J., Zhu, L.-M., Zhu, X.: A survey on dielectric elastomer actuators for soft robots. Bioinspir. Biomim. 12(1), 011003 (2017)

    Article  Google Scholar 

  14. Gu, G., Zou, J., Zhao, R., Zhao, X., Zhu, X.: Soft wall-climbing robots. Sci. Robot. 3(25), eaat2874 (2018)

    Article  Google Scholar 

  15. Gupta, U., Qin, L., Wang, Y., Godaba, H., Zhu, J.: Soft robots based on dielectric elastomer actuators: a review. Smart Mater. Struct. 28(10), 103002 (2019)

    Article  Google Scholar 

  16. Palagi, S., Mark, A.G., Reigh, S.Y., Melde, K., Qiu, T., Zeng, H., Parmeggiani, C., Martella, D., Sanchez-Castillo, A., Kapernaum, N.: Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15(6), 647–653 (2016)

    Article  Google Scholar 

  17. Boothby, J.M., Gagnon, J.C., McDowell, E., Van Volkenburg, T., Currano, L., Xia, Z.: An untethered soft robot based on liquid crystal elastomers. Soft Robot. 9(1), 154–162 (2022)

    Article  Google Scholar 

  18. Vikas, V., Cohen, E., Grassi, R., Sözer, C., Trimmer, B.: Design and locomotion control of a soft robot using friction manipulation and motor–tendon actuation. IEEE Trans. Robot. 32(4), 949–959 (2016)

    Article  Google Scholar 

  19. Manti, M., Hassan, T., Passetti, G., D'Elia, N., Laschi, C., Cianchetti, M.: A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robot. 2(3), 107–116 (2015)

    Article  Google Scholar 

  20. Yang, C., Geng, S., Walker, I., Branson, D.T., Liu, J., Dai, J.S., Kang, R.: Geometric constraint-based modeling and analysis of a novel continuum robot with shape memory alloy initiated variable stiffness. Int. J. Robot. Res. 39(14), 1620–1634 (2020)

    Article  Google Scholar 

  21. De Volder, M., Reynaerts, D.: Pneumatic and hydraulic microactuators: a review. J. Micromech. Microeng. 20(4), 043001 (2010)

    Article  Google Scholar 

  22. Ye, Y., Cheng, P., Yan, B., Lu, Y., Wu, C.: Design of a Novel Soft Pneumatic Gripper with variable gripping size and mode. J. Intell. Robot. Syst. 106(1), 1–15 (2022)

    Article  Google Scholar 

  23. Jiang, C., Wang, D., Zhao, B., Liao, Z., Gu, G.: Modeling and inverse design of bio-inspired multi-segment pneu-net soft manipulators for 3D trajectory motion. Appl. Phys. Rev. 8(4), 041416 (2021)

    Article  Google Scholar 

  24. Li, S., Vogt, D.M., Rus, D., Wood, R.J.: Fluid-driven origami-inspired artificial muscles. Proc. Nat. Acad. Sci. 114(50), 13132–13137 (2017)

    Article  Google Scholar 

  25. Chen, B., Shao, Z., Xie, Z., Liu, J., Pan, F., He, L., Zhang, L., Zhang, Y., Ling, X., Peng, F.: Soft origami gripper with variable effective length. Adv. Intell. Syst. 3(10), 2000251 (2021)

    Article  Google Scholar 

  26. Kim, W., Eom, J., Cho, K.-J.: A dual-origami design that enables the Quasisequential deployment and bending motion of soft robots and grippers. Adv. Intell. Syst. 4(3), 2100176 (2022)

    Article  Google Scholar 

  27. Huang, J., Zhou, J., Wang, Z., Law, J., Cao, H., Li, Y., Wang, H., Liu, Y.: Modular origami soft robot with the perception of interaction force and body configuration. Adv. Intell. Syst. 4, 2200081 (2022)

    Article  Google Scholar 

  28. Rogatinsky, J., Gomatam, K., Lim, Z.H., Lee, M., Kinnicutt, L., Duriez, C., Thomson, P., McDonald, K., Ranzani, T.: A collapsible soft actuator facilitates performance in constrained environments. Adv. Intell. Syst. 4(10), 2200085 (2022)

  29. Aubin, C.A., Gorissen, B., Milana, E., Buskohl, P.R., Lazarus, N., Slipher, G.A., Keplinger, C., Bongard, J., Iida, F., Lewis, J.A.: Towards enduring autonomous robots via embodied energy. Nat. 602(7897), 393–402 (2022)

    Article  Google Scholar 

  30. Bartlett, N.W., Tolley, M.T., Overvelde, J.T., Weaver, J.C., Mosadegh, B., Bertoldi, K., Whitesides, G.M., Wood, R.J.: A 3D-printed, functionally graded soft robot powered by combustion. Sci. 349(6244), 161–165 (2015)

    Article  Google Scholar 

  31. Wang, H., Yang, Y., Lin, G., Jiao, P., He, Z.: Untethered, high-speed soft jumpers enabled by combustion for motions through multiphase environments. Smart Mater. Struct. 30(1), 015035 (2020)

    Article  Google Scholar 

  32. Wehner, M., Truby, R.L., Fitzgerald, D.J., Mosadegh, B., Whitesides, G.M., Lewis, J.A., Wood, R.J.: An integrated design and fabrication strategy for entirely soft. Auton. Robot. Nat. 536(7617), 451–455 (2016)

    Google Scholar 

  33. Tan, Q., Chen, Y., Liu, J., Zou, K., Yi, J., Liu, S., Wang, Z.: Underwater crawling robot with hydraulic soft actuators. Front. Robot. AI. 8, 688697 (2021)

    Article  Google Scholar 

  34. Bell, M.A., Weaver, J.C., Wood, R.J.: An ambidextrous starfish-inspired exploration and reconnaissance robot (the ASTER-bot). Soft Robot. 9(5), 991–1000 (2022)

    Article  Google Scholar 

  35. Li, Y., Chen, Y., Ren, T., Li, Y., Choi, S.H.: Precharged pneumatic soft actuators and their applications to untethered soft robots. Soft Robot. 5(5), 567–575 (2018)

    Article  Google Scholar 

  36. TolleyMichael, T., ShepherdRobert, F., GallowayKevin, C., WoodRobert, J., WhitesidesGeorge, M.: A resilient, untethered soft robot. Soft Robot. 1, 213–223 (2014)

    Article  Google Scholar 

  37. Fan, J., Wang, S., Yu, Q., Zhu, Y.: Swimming performance of the frog-inspired soft robot. Soft Robot. 7(5), 615–626 (2020)

    Article  Google Scholar 

  38. He, P., Wen, J., Stojanovic, V., Liu, F., Luan, X.: Finite-time control of discrete-time semi-Markov jump linear systems: a self-triggered MPC approach. J. Frankl. Inst. 359(13), 6939–6957 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhou, C., Tao, H., Chen, Y., Stojanovic, V., Paszke, W.: Robust point-to-point iterative learning control for constrained systems: a minimum energy approach. Int. J. Robust Nonlinear Control. 32(18), 10139–10161 (2022)

    Article  MathSciNet  Google Scholar 

  40. Pršić, D., Nedić, N., Stojanović, V.: A nature inspired optimal control of pneumatic-driven parallel robot platform. Pro. Inst. Mech. Engineers. 231(1), 59–71 (2017)

    Google Scholar 

  41. Tang, W., Zhang, C., Zhong, Y., Zhu, P., Hu, Y., Jiao, Z., Wei, X., Lu, G., Wang, J., Liang, Y.: Customizing a self-healing soft pump for robot. Nat. Commun. 12(1), 2247 (2021)

    Article  Google Scholar 

  42. Sun, J., Zhou, D., Deng, J., Liu, Y.: Development of a High Flow Rate Soft Pump Driven by Intersected Twisted Artificial Muscles Units, vol 70, no. 7, pp 7153–7162. IEEE Trans. Ind. Electron. (2023)

  43. Cacucciolo, V., Shintake, J., Kuwajima, Y., Maeda, S., Floreano, D., Shea, H.: Stretchable pumps for soft machines. Nat. 572(7770), 516–519 (2019)

    Google Scholar 

  44. Alici, G., Canty, T., Mutlu, R., Hu, W., Sencadas, V.: Modeling and experimental evaluation of bending behavior of soft pneumatic actuators made of discrete actuation chambers. Soft Robot. 5(1), 24–35 (2018)

    Article  Google Scholar 

  45. Moseley, P., Florez, J.M., Sonar, H.A., Agarwal, G., Curtin, W., Paik, J.: Modeling, design, and development of soft pneumatic actuators with finite element method. Adv. Eng. Mater. 18(6), 978–988 (2016)

    Article  Google Scholar 

  46. Zolfagharian, A., Mahmud, M.P., Gharaie, S., Bodaghi, M., Kouzani, A.Z., Kaynak, A.: 3D/4D-printed bending-type soft pneumatic actuators: fabrication, modelling, and control. Virtual Phys. Prototy. 15(4), 373–402 (2020)

    Article  Google Scholar 

  47. Wang, J., Fei, Y., Pang, W.: Design, modeling, and testing of a soft pneumatic glove with segmented pneunets bending actuators. IEEE/ASME Trans. Mechatron. 24(3), 990–1001 (2019)

    Article  Google Scholar 

  48. Larson, K.: Can you Estimate modulus from Durometer Hardness for Silicones. Dow Corning Corporation, Dow White Paper, pp. 1–6 (2016)

  49. Cao, G., Chu, B., Liu, Y.: Analytical modeling and control of soft fast pneumatic networks actuators. Proc. IEEE 46th Annu. Conf. Ind. Electron. Soc, pp. 2760–2765. IEEE, Singapore (2020)

  50. Majidi, C., Shepherd, R.F., Kramer, R.K., Whitesides, G.M., Wood, R.J.: Influence of surface traction on soft robot undulation. Int. J. Robot. Res. 32(13), 1577–1584 (2013)

    Article  Google Scholar 

  51. George Thuruthel, T., Ansari, Y., Falotico, E., Laschi, C.: Control strategies for soft robotic manipulators: a survey. Soft Robot. 5(2), 149–163 (2018)

    Article  Google Scholar 

  52. Janghorban, A., Dehghani, R.: Design and motion analysis of a bio-inspired soft robotic finger based on multi-sectional soft reinforced actuator. J. Intell. Robotic. Syst. 104(4), 1–13 (2022)

    Google Scholar 

  53. Tse, Y.A., Wong, K.W., Yang, Y., Wang, M.Y.: Novel design of a soft pump driven by super-coiled polymer artificial muscles. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, 8789–8794 (2020)

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant No. 52005269) and the Research Project of State Key Laboratory of Mechanical System and Vibration MSV202319.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yang Yang, Yuan Xie and Pei Jiang. The first draft of the manuscript was written by Yang Yang, Jia Liu, Yonghua Chen. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yang Yang or Jia Liu.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

This is an observational study. The Nanjing University of Information Science and Technology Research Ethics Committee has confirmed that no ethical approval is required.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

The authors affirm that human research participants provided informed consent for publication of the images in Figs. 10d and 10e.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

(MP4 13445 kb)

(MP4 31942 kb)

(MP4 20895 kb)

(MP4 22601 kb)

ESM 5

(PDF 1402 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Xie, Y., Liu, J. et al. Self-Pumping Actuation Module and its Application in Untethered Soft Robots. J Intell Robot Syst 108, 16 (2023). https://doi.org/10.1007/s10846-023-01892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01892-5

Keywords