Abstract
This paper introduces the design, dynamic model, and impedance control of a novel five degrees of freedom (DOF) double-driven parallel mechanism (DDPM) for the task of grinding aircraft composite skin. Firstly, a novel parallel mechanism consisting of one PUU (P-active prismatic pairs, U-universal joints) limb and two PRRS (R-revolution joints, R-active revolution joints, S-spherical joints) limbs (PUU-2PRRS) is proposed. Secondly, considering the particularity of the sub-closed loop structure of the mechanism, the dynamic model of the proposed PUU-2PRRS parallel mechanism is established based on closed loop vector and Lagrange methods, and then the correctness of the established dynamic model is proved by the comparative analysis of MATLAB and Adams software. Thirdly, an adaptive impedance control law with switching update rate is proposed to achieve constant force tracking in uncertain environments. Considering that the composite skin grinding task requires low maximum overshoot and high convergence speed of force tracking, the selection methods of the update rate are obtained based on the maximum overshoot and convergence speed analysis in frequency domain. Finally, by simulating different working conditions of composite skin grinding, the adaptive impedance control under switching update rate has better force tracking performance compared with the adaptive impedance control under fixed update rate, which proves the effectiveness of the proposed controller.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Bao, Y., Kang, R., Dong, Z., Zhu, X., Wang, C., Guo, D.: Multipoint support technology for mirror milling of aircraft skins. Mater. Manuf. Process. 33(9), 996–1002 (2018). https://doi.org/10.1080/10426914.2017.1388519
Guo, F., Cheng, G., Pang, Y.: Explicit dynamic modeling with joint friction and coupling analysis of a 5-DOF hybrid polishing robot. Mech. Mach. Theory. 167, 1–15 (2022). https://doi.org/10.1016/j.mechmachtheory.2021.104509
Wu, M., Zhang, Y., Yue, X., Lv, D., Chen, M., Wang, X., Zhang, J.: Optimal design of an asymmetrical parallel mechanism. Proc. Inst. Mech. Part C: J. Mech. Eng. Sci. 235(23), 6922–6939 (2021). https://doi.org/10.1177/0954406221990075
Wu, M., Yue, X., Chen, W., Nie, Q., Zhang, Y.: Accuracy analysis and synthesis of asymmetric parallel mechanism based on Sobol-QMC. Proc. Inst. Mech. Part C: J. Mech. Eng. Sci. 234(21), 4200–4214 (2020). https://doi.org/10.1177/0954406220920702
Wang, G.X.: Dynamics analysis of parallel mechanism with flexible moving platform based on floating frame of reference formulation. ASME J. Mech. Rob. 11(4), 1–22 (2019). https://doi.org/10.1115/1.4043045
Bi, Z., Jin, Y.: Kinematic modeling of Exechon parallel kinematic machine. Robot. Comput-Inter. Manuf. 27(1), 186–193 (2011). https://doi.org/10.1016/j.rcim.2010.07.006
Lopez-Custodio, P.C., Fu, R., Dai, J., Jin, Y.: Compliance model of Exechon manipulators with an offset wrist. Mech. Mach. Theory. 167, 1–18 (2022). https://doi.org/10.1016/j.mechmachtheory.2021.104558
Chen, X., Liu, X., Xie, F., Sun, T.: A comparison study on motion/force transmissibility of two typical 3-DOF parallel manipulators: the Sprint Z3 and A3 tool heads. Int. J. Adv. Robot. Syst. 11, 1–10 (2014). https://doi.org/10.5772/57458
Jin, X., Fang, Y., Zhang, D., Luo, X.: Design and analysis of a class of redundant collaborative manipulators with 2D large rotational angles. Front. Mech. Eng. 15(1), 66–80 (2020). https://doi.org/10.1007/s11465-019-0570-x
Ding, J., Wang, C.: Accuracy analysis and error compensation for Tricept machine tool under load. J. Mech. Sci. Technol. 35(8), 3591–3600 (2021). https://doi.org/10.1007/s12206-021-0730-x
Farooq, S.S., Baqai, A.A., Shah, M.F.: Optimal Design of Tricept Parallel Manipulator with Particle Swarm Optimization Using Performance Parameters. J. Eng. Res. 9(2), 378–395 (2021). https://doi.org/10.36909/jer.v9i2.9073
Ni, Y., Zhang, B., Sun, Y., Zhang, Y.: Accuracy analysis and design of A3 parallel spindle head. Chin. J. Mech. Eng. 29(2), 239–249 (2016). https://doi.org/10.3901/CJME.2015.1210.144
Fan, S., Fan, S., Lan, W., Song, G.: A new approach to enhance the stiffness of heavy-load parallel robots by means of the component selection. Robot. Comput-Inter. Manuf. 61, 1–12 (2019). https://doi.org/10.1016/j.rcim.2019.101834
Li, J., Yue, F., Shen, N., Wang, Z., Geng, L.: Dimensional synthesis of a 5-DOF hybrid robot. Mech. Mach. Theory. 150, 1–17 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.103865
Duan, J., Gan, Y., Chen, M., Dai, X.: Adaptive variable impedance control for dynamic contact force tracking in uncertain environment. Robot. Auton. Syst. 102, 54–65 (2018). https://doi.org/10.1016/j.robot.2018.01.009
Hashemi, D., Heidari, H.: Trajectory planning of quadrotor UAV with maximum payload and minimum oscillation of suspended load using optimal control. J. Intell. Robot. Syst. 100(3–4), 1369–1381 (2020). https://doi.org/10.1007/s10846-020-01166-4
Yan, Z., Yang, H., Zhang, W., Gong, Q., Lin, F., Zhang, Y.: Bionic fish trajectory tracking based on a CPG and model predictive control. J. Intell. Robot. Syst. 105(2), 1–17 (2022). https://doi.org/10.1007/s10846-022-01644-x
Yang, X., Wu, H., Li, Y., Kang, S., Chen, B.: Computationally efficient inverse dynamics of a class of six-DOF parallel robots: dual quaternion approach. J. Intell. Robot. Syst. 94(1), 101–113 (2019). https://doi.org/10.1007/s10846-018-0800-1
Talaeizadeh, A., Forootan, M., Zabihi, M., Pishkenari, H.N.: Comparison of Kane's and Lagrange's methods in analysis of constrained dynamical systems. Robotica. 38(12), 2138–2150 (2020). https://doi.org/10.1017/S0263574719001899
Burghardt, A., Skwarek, W.: Modeling the dynamics of two cooperating robots. Appl. Sci. 11(13), 1–12 (2021). https://doi.org/10.3390/app11136019
Amouri, A., Zaatri, A., Mahfoudi, C.: Dynamic modeling of a class of continuum manipulators in fixed orientation. J. Intell. Robot. Syst. 91(3–4), 413–424 (2018). https://doi.org/10.1007/s10846-017-0734-z
Yao, J., Gu, W., Feng, Z., Chen, L., Xu, Y., Zhao, Y.: Dynamic analysis and driving force optimization of a 5-DOF parallel manipulator with redundant actuation. Robot. Comput-Inter. Manuf. 48, 51–58 (2017). https://doi.org/10.1016/j.rcim.2017.02.006
Mustalahti, P., Mattila, J.: Position-based impedance control Design for a Hydraulically Actuated Series Elastic Actuator. Energies. 15(7), 1–14 (2022). https://doi.org/10.3390/en15072503
Kizir, S., Elsavi, A.: Position-based fractional-order impedance control of a 2 DOF serial manipulator. Robotica. 39(9), 1560–1574 (2021). https://doi.org/10.1017/S0263574720001356
Flores-Abad, A., Nandayapa, M., Garcia-Teran, M.A.: Force sensorless impedance control for a space robot to capture a satellite for on-orbit servicing. 2018 IEEE Aerospace Conference, pp. 1–7. Big Sky (2018). https://doi.org/10.1109/AERO.2018.839671
Liu, G., Han, B.: Improving robotic impedance control performance employing a cascaded controller based on virtual dynamics model. Proc. Inst. Mech. Part C: J. Mech. Eng. Sci. 236(3), 1815–1825 (2022). https://doi.org/10.1177/09544062211023537
Hogan, N.: Impedance control: an approach to manipulation: part I—theory. J. Dyn. Syst-T ASME. 107(1), 1–7 (1985)
Hogan, N.: Impedance control: an approach to manipulation: part II—implementation. J. Dyn. Syst-T ASME. 107(1), 8–16 (1985)
Hogan, N.: Impedance control: an approach to manipulation: part III—applications. J. Dyn. Syst-T ASME. 107(1), 17–24 (1985)
Song, P., Yu, Y., Zhang, X.: A tutorial survey and comparison of impedance control on robotic manipulation. Robotica. 37(5), 801–836 (2019). https://doi.org/10.1017/S0263574718001339
Shih-Hsuan, C., Cheng-Chin, C., Chen, K., Huang, X., Pong, S.: Joint position-based impedance control with load compensation for robot arm. J. Chin. Inst. Eng. 39(3), 337–344 (2016). https://doi.org/10.1080/02533839.2015.1101617
Jiao, R., Rashad, R., Bicego, D., Chou, W., Stramigioli, S.: Observer-based geometric impedance control of a fully-actuated Hexarotor for physical sliding interaction with unknown generic surfaces. J. Intell. Robot. Syst. 102(4), 1–18 (2021). https://doi.org/10.1007/s10846-021-01434-x
Roveda, L., Maskani, J., Franceschi, P., Abdi, A., Braghin, F., Tosatti, L.M., Pedrocchi, N.: Model-based reinforcement learning variable impedance control for human-robot collaboration. J. Intell. Robot. Syst. 100(2), 417–433 (2020). https://doi.org/10.1007/s10846-020-01183-3
Ba, K., Ma, G., Yu, B., Jin, Z., Huang, Z., Zhang, J., Kong, X.: A nonlinear model-based variable impedance parameters control for position-based impedance control system of hydraulic drive unit. Int. J. control Autom. 18(7), 1806–1817 (2020). https://doi.org/10.1007/s12555-019-0151-0
Koivumaki, J., Mattila, J.: Stability-guaranteed impedance control of hydraulic robotic manipulators. IEEE-ASME T. Mech. 22(2), 601–612 (2017). https://doi.org/10.1109/TMECH.2016.2618912
Jiang, J., Liu, J., Chen, W., Wen, C., Chen, W.: An impedance-based force control scheme to a plate-to-plate Nanoimprinter. IEEE T. Nanotechnol. 15(2), 328–336 (2016). https://doi.org/10.1109/TNANO.2016.2526673
Dong, W., Guan, R., Yuan, L., Gu, X., Anwar, A., Lin, W.: Adaptive impedance based force and position control for pneumatic compliant system. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 2949–2954. Beijing (2017). https://doi.org/10.1109/IECON.2017.8216498
Abu-Dakka, F.J., Leonel, R., Caldwell, D.G.: Force-based variable impedance learning for robotic manipulation. Robot. Auton. Syst. 109, 156–167 (2018). https://doi.org/10.1016/j.robot.2018.07.008
Kimmel, M., Hirche, S.: Invariance Control for Safe Human–Robot Interaction in Dynamic Environments. IEEE T. Robot. 33(6), 1327–1342 (2017). https://doi.org/10.1109/TRO.2017.2750697
Liu, J.: Robot Control System Design and MATLAB Simulation: the Basic Design Method. Tsinghua University Press, Beijing (2016)
Ba, K., Yu, B., Zhu, Q., Gao, Z., Ma, G., Jin, Z., Kong, X.: The position-based impedance control combined with compliance-eliminated and feedforward compensation for HDU of legged robot. J. Franklin I. 356(16), 9232–9253 (2019). https://doi.org/10.1016/j.jfranklin.2019.08.014
Piovesan, D., Kolesnikov, M., Lynch, K., Mussa-Ivaldi, F.A.: The concurrent control of motion and contact force in the presence of predictable disturbances. ASME J. Mech. Rob. 11(6), 1–14 (2020). https://doi.org/10.1115/1.4044599
Ogata, K., Brewer, J. W.: Modern Control Engineering. ASME. J. Dyn. Sys., Meas., Control. 93(1), 63 (1971). https://doi.org/10.1115/1.3426465
Wego, W.: Mechatronics and Automatic Control Systems. Springer, Cham (2013)
Wang, Z., Zou, L., Su, X., Luo, G., Li, R., Huang, Y.: Hybrid force/position control in workspace of robotic manipulator in uncertain environments based on adaptive fuzzy control. Robot. Auto. Syst. 145, 1–26 (2021). https://doi.org/10.1016/j.robot.2050.103870
Kumar, N., Rani, M.: Neural network-based hybrid force/position control of constrained reconfigurable manipulators. Neurocomputing. 420(3), 1–14 (2021). https://doi.org/10.1016/j.neucom.2020.09.009
Rojas-Garcia, L., Bonilla-Gutierrez, I., Mendoza-Gutierrez, M., Chavez-Olivares, C.: Adaptive force/position control of robot manipulators with bounded inputs. J. Mech. Sci. Technol. 36(3), 1497–1509 (2022). https://doi.org/10.1007/s12206-022-0236-1
Merlet, J.P.: Parallel Robots. Springer, Dordrecht (2006)
Aghababa, M.P., Akbari, M.E.: A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances. Appl. Math. Comput. 218(9), 5757–5768 (2012). https://doi.org/10.1016/j.amc.2011.11.080
Najafi, A., Vu, M.T., Mobayen, S., Asad, J.H., Fekih, A.: Adaptive barrier fast terminal sliding mode actuator fault tolerant control approach for quadrotor UAVs. Mathematics. 10(16), 1–22 (2022). https://doi.org/10.3390/math10163009
Polycarpou, M.M., Ioannou, P.A.: A robust adaptive nonlinear control design. Automatica. 32(3), 423–427 (1996)
Ioannou, P.A., Sun, J.: Robust Adaptive Control. Prentice-Hall, Inc. (1995). https://doi.org/10.1007/978-1-4471-5058-9_118
Funding
This research is financially supported by the Fundamental Research Funds for the Central Universities (No. 3122019188).
Author information
Authors and Affiliations
Contributions
Conceptualization: Mengli Wu and Dezuo Li; Methodology: Mengli Wu, Dezuo Li and Yiran Cao; Formal analysis and investigation: Mengli Wu, Dezuo Li and Xuhao Wang; Writing-original draft preparation: Mengli Wu and Linda Jia; Writing-review and editing: Mengli Wu, Dezuo Li, Yiran Cao and Xuhao Wang; Funding acquisition: Mengli Wu and Linda Jia.
Corresponding authors
Ethics declarations
Ethical Approval
Not applicable.
Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Conflict of Interest/Competing Interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix 1 Stability proof for position control
Considering the dynamic property of the system, we use the following Lyapunov function candidate,
The Lyapunov function is derived as follows
According to the characteristics of the dynamic of the mechanism, \(\dot{\textbf{M}}\left({\textbf{X}}_{\textrm{s}}\right)-2\textbf{C}\left({\dot{\textbf{X}}}_{\textrm{s}},{\textbf{X}}_{\textrm{s}}\right)\) is considered to be skew-symmetric yields \(\frac{1}{2}{\boldsymbol{r}}^{\textrm{T}}\dot{\textbf{M}}\left({\textbf{X}}_{\textrm{s}}\right)\boldsymbol{r}={\boldsymbol{r}}^{\textrm{T}}\textbf{C}\left({\dot{\textbf{X}}}_{\textrm{s}},{\textbf{X}}_{\textrm{s}}\right)\boldsymbol{r}\) [48]. Then, substituting \(\frac{1}{2}{\boldsymbol{r}}^{\textrm{T}}\dot{\textbf{M}}\left({\textbf{X}}_{\textrm{s}}\right)\boldsymbol{r}={\boldsymbol{r}}^{\textrm{T}}\textbf{C}\left({\dot{\textbf{X}}}_{\textrm{s}},{\textbf{X}}_{\textrm{s}}\right)\boldsymbol{r}\) into Eq. (84) yields
From Lemmas 1 and 2 (see Appendix 2) [49,50,51], the following relation is given,
Therefore, the Lyapunov function can be further derived as
where λ min (Kd) and λ max (M(Xs)) are the maximum eigenvalues of Kd and M(Xs), respectively, and \(\lambda =\frac{\lambda {}_{\mathit{\min}}\left({\textbf{K}}_{\textrm{d}}\right)}{\lambda {}_{\mathit{\max}}\left(\textbf{M}\left({\boldsymbol{X}}_s\right)\right)}\).
Considering \(\dot{V}\le -2\lambda V+ h\rho \varepsilon\) and Lemma 3 (see Appendix 2) [52] yield the following relations,
from which the following relation is easily derived, \(\underset{t\to \infty }{\mathit{\lim}}V(t)\le \frac{h\rho \varepsilon}{2\lambda }\). It is obvious that the tracking error converges gradually, and the convergence accuracy depends on ε, λ and h.
Appendix 2 Lemmas for position control stability proof
Lemma 1
For any given real number υ, the following inequality exists [49, 50],
Lemma 2
For any given real number κ, the following inequality exists [51],
Lemma 3
Let f, V : [0, ∞) ∈ R. If the relation \(\dot{V}\le -\psi V+f,\forall t\ge {t}_0\ge 0\), then the following relation holds [52]:
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wu, M., Li, D., Cao, Y. et al. Dynamic Analysis and Impedance Control of a Novel Double-Driven Parallel Mechanism. J Intell Robot Syst 108, 45 (2023). https://doi.org/10.1007/s10846-023-01915-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10846-023-01915-1