Skip to main content
Log in

Consensus Formation of Multi-agent Systems with Obstacle Avoidance based on Event-triggered Impulsive Control

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper utilizes the distributed event-triggered impulsive control (ETIC) scheme to solve the consensus formation problem of leader-follower multi-agent systems (MASs) subject to obstacles. In order to solve the problem of the high cost of continuous control, an impulsive control strategy combined with the event triggering function is applied. By Lyapunov theory, the sufficient conditions for the strategy to achieve global exponential consensus are obtained, which implies that the formation of the system can be completed successfully. This research proposes a novel event-triggered condition which reduces the system’s energy loss when performing formation tasks. The proposed scheme not only realizes the system formation but also avoids the occurrence of Zeno behavior. Furthermore, the influence of the external environment with obstacles to consensus formation is considered. An improved artificial potential field (APF) function is proposed, which enables the MASs to avoid obstacles during the formation process. Finally, the effectiveness of the proposed method is verified by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Li, X.M., Zhou, Q., Li, P., Li, H., Lu, R.: Event-triggered consensus control for multi-agent systems against false data-injection attacks. IEEE Trans. Cybern. 50(5), 1856–1866 (2019)

    Article  Google Scholar 

  2. Yang, Y., Xu, H., Yue, D.: Observer-based distributed secure consensus control of a class of linear multi-agent systems subject to random attacks. IEEE Trans. Circuits Syst. I: Regul. Pap. 66(8), 3089–3099 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. He, W., Xu, W., Ge, X., Han, Q.-L., Du, W., Qian, F.: Secure control of multiagent systems against malicious attacks: A brief survey. IEEE Trans. Industr. Inform. 18(6), 3595–3608 (2021)

    Article  Google Scholar 

  4. Li, Z., Chen, G.: Fixed-time consensus based distributed economic generation control in a smart grid. Int. J. Electr. Power Energy Syst. 134, 107437 (2022)

    Article  Google Scholar 

  5. Yang, K., Li, C., Jing, X., Zhu, Z., Wang, Y., Ma, H., Zhang, Y.: Energy dispatch optimization of islanded multi-microgrids based on symbiotic organisms search and improved multi-agent consensus algorithm. Energy 239, 122105 (2022)

    Article  Google Scholar 

  6. Li, F., Qin, J., Kang, Y.: Multi-agent system based distributed pattern search algorithm for non-convex economic load dispatch in smart grid. IEEE Trans. Power. Syst. 34(3), 2093–2102 (2018)

    Article  Google Scholar 

  7. Zhang, H., Ren, H., Mu, Y., Han, J.: Optimal consensus control design for multiagent systems with multiple time delay using adaptive dynamic programming. IEEE Trans. Cybern. 52(12), 12832–12842 (2021)

    Article  Google Scholar 

  8. Zhang, Y., Zhao, B., Liu, D.: Deterministic policy gradient adaptive dynamic programming for model-free optimal control. Neurocomputing 387, 40–50 (2020)

    Article  Google Scholar 

  9. Jiang, H., He, H.: Data-driven distributed output consensus control for partially observable multiagent systems. IEEE Trans. Cybern. 49(3), 848–858 (2018)

    Article  Google Scholar 

  10. Zhang, D., Tang, Y., Zhang, W., Wu, X.: Hierarchical design for position-based formation control of rotorcraft-like aerial vehicles. IEEE Trans. Control Netw. Syst. 7(4), 1789–1800 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, X., Zerr, B., Thomas, H., Clement, B., Xie, Z.: Pattern formation of multi-auv systems with the optical sensor based on displacement-based formation control. Int. J. Syst. Sci. 51(2), 348–367 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Choi, Y.H., Kim, D.: Distance-based formation control with goal assignment for global asymptotic stability of multi-robot systems. IEEE Robot. Autom. Lett. 6(2), 2020–2027 (2021)

    Article  Google Scholar 

  13. Wu, Y., Gou, J., Hu, X., Huang, Y.: A new consensus theory-based method for formation control and obstacle avoidance of uavs. Aerosp. Sci. Technol. 107, 106332 (2020)

    Article  Google Scholar 

  14. Huang, Y., Tang, J., Lao, S.: Uav group formation collision avoidance method based on second-order consensus algorithm and improved artificial potential field. Symmetry 11(9), 1162 (2019)

  15. Wu, J., Luo, C., Luo, Y., Li, K.: Distributed uav swarm formation and collision avoidance strategies over fixed and switching topologies. IEEE Trans. Cybern. 52(10), 10969–10979 (2021)

    Article  Google Scholar 

  16. Sun, X., Wang, G., Fan, Y., Mu, D., Qiu, B.: A formation autonomous navigation system for unmanned surface vehicles with distributed control strategy. IEEE Trans. Intell. Transp. Syst. 22(5), 2834–2845 (2020)

    Article  Google Scholar 

  17. Barnes, L., Fields, M., Valavanis, K.: Unmanned ground vehicle swarm formation control using potential fields. In: 2007 Mediterranean Conference on Control & Automation, pp. 1–8 (2007). IEEE

  18. Lin, Z., Ding, W., Yan, G., Yu, C., Giua, A.: Leader-follower formation via complex laplacian. Automatica 49(6), 1900–1906 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ren, W., Beard, R.W.: Decentralized scheme for spacecraft formation flying via the virtual structure approach. J. Guid. Control Dyn. 27(1), 73–82 (2004)

    Article  Google Scholar 

  20. Yang, J., Zhang, K.Y., Wang, X.M., Hao, C.L., Wei, T.: Uav formation control based on the improved apf. In: Advanced Materials Research, vol. 933, pp. 358–364 (2014). Trans Tech Publ

  21. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ge, X., Han, Q.L.: Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism. IEEE Trans. Ind. Electron. 64(10), 8118–8127 (2017)

    Article  Google Scholar 

  23. Li, X., Tang, Y., Karimi, H.R.: Consensus of multi-agent systems via fully distributed event-triggered control. Automatica 116, 108898 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cao, L., Pan, Y., Liang, H., Huang, T.: Observer-based dynamic event-triggered control for multiagent systems with time-varying delay. IEEE Trans. Cybern. 53(5), 3376–3387 (2022)

    Article  Google Scholar 

  25. Zhang, S.-Q., Che, W.-W., Deng, C.: Observer-based event-triggered control for linear mass under a directed graph and dos attacks. J. Control. Decis. 9(3), 384–396 (2022)

    Article  MathSciNet  Google Scholar 

  26. Tan, X., Cao, J., Li, X.: Consensus of leader-following multiagent systems: A distributed event-triggered impulsive control strategy. IEEE Trans. Cybern. 49(3), 792–801 (2019)

    Article  Google Scholar 

  27. Hou, Z.G., Cheng, L., Tan, M.: Decentralized robust adaptive control for the multiagent system consensus problem using neural networks. IEEE Trans. Syst. Man. Cybern. Part B (Cybernetics) 39(3), 636–647 (2009)

    Article  Google Scholar 

  28. Hu, G.: Robust consensus tracking of a class of second-order multi-agent dynamic systems. Syst. Control Lett. 61(1), 134–142 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Z., Liu, X., Lin, P., Ren, W.: Consensus of linear multi-agent systems with reduced-order observer-based protocols. Syst. Control Lett. 60(7), 510–516 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yu, Z., Zhang, W.: Consensus of the hybrid multiagent system under impulse control. IEEE Trans. Circuits Syst. II Express Briefs 68(7), 2573–2577 (2021)

    Google Scholar 

  31. He, W., Chen, G., Han, Q.L., Qian, F.: Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inf. Sci. 380, 145–158 (2017)

    Article  MATH  Google Scholar 

  32. Tang, Y., Gao, H., Zhang, W., Kurths, J.: Leader-following consensus of a class of stochastic delayed multi-agent systems with partial mixed impulses. Automatica 53, 346–354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Du, W., Leung, S.Y.S., Tang, Y., Vasilakos, A.V.: Differential evolution with event-triggered impulsive control. IEEE Trans. Cybern. 47(1), 244–257 (2016)

    Article  Google Scholar 

  34. Tan, X., Cao, J., Li, X.: Consensus of leader-following multiagent systems: A distributed event-triggered impulsive control strategy. IEEE Trans. Cybern. 49(3), 792–801 (2018)

    Article  Google Scholar 

  35. Li, X., Peng, D., Cao, J.: Lyapunov stability for impulsive systems via event-triggered impulsive control. IEEE Trans. Autom. Control 65(11), 4908–4913 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Rob. Res. 5(1), 90–98 (1986)

    Article  Google Scholar 

  37. Lindqvist, B., Mansouri, S.S., Agha-mohammadi, A.-A., Nikolakopoulos, G.: Nonlinear mpc for collision avoidance and control of uavs with dynamic obstacles. IEEE Robot. Autom. Lett. 5(4), 6001–6008 (2020)

    Article  Google Scholar 

  38. Wang, X., Liu, J., Peng, H., Qie, X., Zhao, X., Lu, C.: A simultaneous planning and control method integrating apf and mpc to solve autonomous navigation for usvs in unknown environments. J. Intell. Robot. Syst. 105(2), 36 (2022)

  39. Back, S., Cho, G., Oh, J., Tran, X.T., Oh, H.: Autonomous uav trail navigation with obstacle avoidance using deep neural networks. J. Intell. Robot. Syst. 100(3), 1195–1211 (2020)

    Article  Google Scholar 

  40. Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math., 292–296 (1919)

  41. Zhang, H., Ji, H., Ye, Z., Senping, T., Zhang, H., Li, C.: Impulsive consensus of multi-agent systems with stochastically switching topologies. Nonlinear Anal.: Hybrid Syst. 26, 212–224 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Ma, T., Cui, B., Wang, Y., Liu, K.: Stochastic synchronization of delayed multiagent networks with intermittent communications: An impulsive framework. Int. J. Robust Nonlinear Control 29(13), 4537–4561 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ma, T., Yu, T., Huang, J., Yang, X., Gu, Z.: Adaptive odd impulsive consensus of multi-agent systems via comparison system method. Nonlinear Anal.: Hybrid Syst. 35, 100824 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 62276036, 61876200 and 62006031, in part by the Major Project of Scientific and Technological Research Program of Chongqing Municipal Education Commission under Grant No. KJZD-M202100602, and in part by the Surface Project of Natural Science Foundation of Chongqing under Grant No. cstc2021jcyj-msxmX1043.

Author information

Authors and Affiliations

Authors

Contributions

Lianghao Ji: Conceptualization, Methodology, Formal analysis, Writing - review & editing, Supervision, Project administration, Funding acquisition. Xiaofeng Qu: Conceptualization, Methodology,Software, Formal analysis, Validation, Investigation, Data curation, Writing - original draft, Writing - review & editing. Chengmei Tang: Conceptualization, Methodology, Software, Formal analysis, Validation, Investigation, Data curation, Writing - original draft, Writing - review & editing. Shasha Yang and Xing Guo: Conceptualization, Methodology, Writing - review & editing, Funding acquisition. Huaqing Li: Investigation, Methodology, Data curation, Conceptualization, Investigation, Resources. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lianghao Ji.

Ethics declarations

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethics approval

Not applicable. Our research does not involve any human or animal subjects.

Consent to Participate

Not applicable. Our research does not involve any human subjects.

Consent for Publication

Not applicable.

Conflict of Interests

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

The Lyapunov function that we create is as follows:

$$\begin{aligned} {V_k}(\vartheta (t)) = {\vartheta ^\textrm{T}}(t)S\vartheta (t),k \in {\mathrm{\mathfrak {N} }^ + }. \end{aligned}$$
(21)

Combined Eq. 10, the derivative of \({V_k}(\vartheta (t))\) is

$$\begin{aligned} {{\dot{V}}_k}(\vartheta (t))&= {\vartheta ^{\textrm{T}}}(t)[{({I_N} \otimes A)^{\textrm{T}}}S + S({I_N} \otimes A)\vartheta (t)] \\&\mathrm{{}} \le - \gamma {\left\| {\vartheta (t)} \right\| ^2}. \end{aligned}$$

According to \({\lambda _{min}}(S){\left\| {\vartheta (t)} \right\| ^2} \le {\vartheta ^{\textrm{T}}}(t)S\vartheta (t) \le {\lambda _{max}}(S)\)\({\big \Vert {\vartheta (t)} \big \Vert ^2}\),

$$\begin{aligned} {\lambda _{min}}(S){\left\| {\vartheta (t)} \right\| ^2}&\le {V_k}(\vartheta (t))\\ \nonumber&\le {V_k}(\vartheta ({t_k})) + \int _{{t_k}}^t { - \gamma {{\left\| {\vartheta (s)} \right\| }^2}ds}\\ \nonumber&\le {\lambda _{\max }}(S){\left\| {\vartheta ({t_k})} \right\| ^2} + \int _{{t_k}}^t { - \gamma {{\left\| {\vartheta (s)} \right\| }^2}ds}. \end{aligned}$$
(22)

From the Lemma 1, we can get

$$\begin{aligned} {\left\| {\vartheta (t)} \right\| ^2}&\le \frac{{{\lambda _{\max }}(S)}}{{{\lambda _{\min }}(S)}}{\left\| {\vartheta ({t_k})} \right\| ^2} + \int _{{t_k}}^t {\frac{{ - \gamma }}{{{\lambda _{\min }}(S)}}{{\left\| {\vartheta (s)} \right\| }^2}ds } \\ \nonumber&\le \frac{{{\lambda _{\max }}(S)}}{{{\lambda _{min}}(S)}}{\left\| {\vartheta ({t_k})} \right\| ^2}{\exp ({\int _{{t_k}}^t {\frac{{ - \gamma }}{{{\lambda _{\min }}(S)}}ds} })}. \end{aligned}$$
(23)

Based on Eqs. 10 and 15, we have

$$\begin{aligned} \left\| {\vartheta (t)} \right\|&\le \sqrt{\frac{{{\lambda _{\max }}(S)}}{{{\lambda _{min}}(S)}}} \left\| ({I_N} - \alpha \tilde{L}\chi (k) )\vartheta (t_k^ - ) \right\| \\&\quad \times \ {\exp ({\int _{{t_k}}^t {\frac{{ - \gamma }}{{{2\lambda _{\min }}(S)}}ds} })} \\&\le \left\| {\vartheta (t_k^ - )} \right\| \sqrt{\frac{{{\lambda _{\max }}(S)}}{{{\lambda _{min}}(S)}}} \left\| {{I_N} - \alpha \tilde{L}\chi (k)} \right\| \\&\quad \times {\exp ({\int _{{t_k}}^t {\frac{{ - \gamma }}{{{2\lambda _{\min }}(S)}}ds} })}\\&\qquad \qquad \vdots \\ \qquad \quad&\le \left\| {\vartheta (t_{k - m + 1}^ - )} \right\| {\left( {\sqrt{\frac{{{\lambda _{\max }}(S)}}{{{\lambda _{min}}(S)}}} } \right) ^m} \\&\quad \times \left\| {{I_N} - \alpha \tilde{L}\chi (k)} \right\| \times \left\| {{I_N} - \alpha \tilde{L}\chi (k-1)} \right\| \\&\quad \times \cdots \times \left\| {{I_N} - \alpha \tilde{L}\chi (k-m+1)} \right\| \\&\quad \times {\exp ({ - (\int _{{t_k}}^t {\frac{\gamma }{{{2\lambda _{\min }}(S)}}ds} + \int _{{t_{k - 1}}}^{{t_k}} {\frac{\gamma }{{{2\lambda _{\min }}(S)}}ds} )})} \\&\qquad \qquad \vdots \\ \qquad \quad&\le \left\| {\vartheta (t_0^- )} \right\| \mathop \prod \limits _{m = 1}^k \sqrt{\frac{{{\lambda _{\max }}(S)}}{{{\lambda _{min}}(S)}}} ({I_N} - \alpha \tilde{L}\chi (m)) \\&\quad \times \exp (\sum \limits _{m = 0}^{k - 1} - (\int _m^{m + 1} {\frac{\gamma }{{{2\lambda _{\min }}(S)}}ds}\\&\quad + \int _{{t_k}}^t {\frac{\gamma }{{{2\lambda _{\min }}(S)}}ds} )). \end{aligned}$$

By the integral median theorem, we can get

$$\begin{aligned} \left\| {\vartheta (t)} \right\|&\le \left\| {\vartheta (t_0^ - )} \right\| \mathop \prod \limits _{m = 1}^k \sqrt{\frac{{{\lambda _{\max }}(S)}}{{{\lambda _{min}}(S)}}} ({I_N} - \alpha \tilde{L}\chi (m)) \\ \nonumber&\quad \times {\exp ({ - \frac{\gamma }{{2{\lambda _{\min }}(S)}}(t - {t_0})})}\\ \nonumber&\le \left\| {\vartheta (t_0^ - )} \right\| \exp (\sum \limits _{m = 1}^k {\ln (\sqrt{\frac{{{\lambda _{\max }}(S)}}{{{\lambda _{min}}(S)}}} ({I_N} - \alpha \tilde{L}\chi (m)))} \\ \nonumber&\quad - \frac{\gamma }{{2{\lambda _{\min }}(S)}}(t - {t_0})) \\ \nonumber&\le \left\| {\vartheta (t_0 )} \right\| \exp (- \omega t). \end{aligned}$$
(24)

Theorem 1 is proved.

Proof of Theorem 2

For time \(t \in ({t_k},{t_{k + 1}}]\), we consider the time derivative of \({\iota _i}(t)\) as follows

$$\begin{aligned} \frac{{d\left\| {{{\iota }_i}(t)} \right\| }}{{dt}}&= \frac{d}{{dt}}\left\| {{q_i}(t_k^{i - }) - {q_i}(t)} \right\| \nonumber \\ \le&\sum \limits _{j \in {{\textrm{N}}_i}} {{a_{ij}}\left\| {(A{\xi _{ij}}(t)+ \alpha {q_{ij}}(t))} \right\| } + {b_i}\left\| {A{\xi _{i0}}(t) - {q_i}(t_k^{i - })} \right\| \nonumber \\&+ \left\| {{{\iota }_i}(t)} \right\| \nonumber \\&\le \left\| {{{\iota }_i}(t)} \right\| \nonumber \\&\times (\frac{{\sum \limits _{j \in {{\textrm{N}}_i}} {{a_{ij}}\left\| {(A{\xi _{ij}}(t) \!+\! \alpha {q_{ij}}(t))} \right\| } \!+\! {b_i}\left\| {A{\xi _{i0}}(t) \!-\! {q_i}(t_k^{i - })} \right\| }}{{\left\| {{{\iota }_i}(t)} \right\| }} \!+\! 1) \end{aligned}$$
(25)

so we get

$$\begin{aligned}{} & {} \frac{d\left\| \iota _{i} (t) \right\| /dt}{\left\| \iota _{i}(t)\right\| } - 1\nonumber \\\le & {} \frac{{\sum \limits _{j \in {{\textrm{N}}_i}} {{a_{ij}}\left\| {(A{\xi _{ij}}(t) \!+\! \alpha {q_{ij}}(t))} \right\| } \!+\! {b_i}\left\| {A{\xi _{i0}}(t) \!-\! {q_i}(t_k^{i - })} \right\| }}{{\left\| {{{\iota }_i}(t)} \right\| }}. \end{aligned}$$
(26)

In addition, we have

$$\begin{aligned} \begin{aligned} \begin{array}{l} \frac{1}{{{\exp ({t - t_k^i})} - 1}} \le \frac{{\sum \limits _{j \in {{\textrm{N}}_i}} {{a_{ij}}\left\| {(A{\xi _{ij}}(t) + \alpha {q_{ij}}(t))} \right\| } + {b_i}\left\| {A{\xi _{io}}(t) - {q_i}(t_k^{i - })} \right\| }}{{\left\| {{{\iota }_i}(t)} \right\| }} \end{array} \end{aligned} \end{aligned}$$
(27)

then

$$\begin{aligned} \begin{aligned} \left\| {{{\iota }_i}(t)} \right\| \le&(\sum \limits _{j \in {{\textrm{N}}_i}} {{a_{ij}}\left\| {(A{\xi _{ij}}(t) + \alpha {q_{ij}}(t))} \right\| } \\&+ {b_i}\left\| {A{\xi _{io}}(t) - {q_i}(t_k^{i - })} \right\| )({\exp ({t - t_k^i})} - 1). \end{aligned} \end{aligned}$$
(28)

When the event-triggering function \({U_i}(t)\) tends to zero, according to Eq. 8

$$\begin{aligned} \begin{aligned} \sqrt{\beta \left\| {{q_i}(t_k^{i - })} \right\| } <&(\sum \limits _{j \in {{\textrm{N}}_i}} {{a_{ij}}\left\| {(A{\xi _{ij}}(t) + \alpha {q_{ij}}(t))} \right\| } \\&+\! {b_i}\left\| {A{\xi _{io}}(t) \!-\! {q_i}(t_k^{i - })} \right\| )({\exp ({t \!-\! t_k^i})} \!-\! 1). \end{aligned} \end{aligned}$$
(29)

Defining \(T_k^i = t_{k + 1}^i - t_k^i\), we obtain

$$\begin{aligned} \begin{aligned}&{\exp ({T_k^i})}> \frac{{\sqrt{\beta \left\| {{q_i}(t_k^{i - })} \right\| } }}{{\sum \limits _{j \in {{\textrm{N}}_i}} {{a_{ij}}\left\| {(A{\xi _{ij}}(t) \!+\! \alpha {q_{ij}}(t))} \right\| } \!+\! {b_i}\left\| {A{\xi _{io}}(t) - {q_i}(t_k^{i - })} \right\| }} \!+\! 1. \end{aligned} \end{aligned}$$
(30)

Thus

$$\begin{aligned} T_k^i >&\ln&(\frac{{\sqrt{\beta \left\| {{q_i}(t_k^{i - })} \right\| } }}{{\sum \limits _{j \in {{\textrm{N}}_i}} {{a_{ij}}\left\| {(A{\xi _{ij}}(t) + \alpha {q_{ij}}(t))} \right\| } + {b_i}\left\| {A{\xi _{io}}(t) - {q_i}(t_k^{i - })} \right\| }} + 1) \nonumber \\\ge & {} 0. \end{aligned}$$
(31)

The Proof of Theorem 2 is completed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, L., Qu, X., Tang, C. et al. Consensus Formation of Multi-agent Systems with Obstacle Avoidance based on Event-triggered Impulsive Control. J Intell Robot Syst 109, 61 (2023). https://doi.org/10.1007/s10846-023-01987-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01987-z

Keywords

Navigation